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A B S T R A C T

Computer vision systems in outdoor environments are strongly affected by different atmospheric/weather
conditions. Therefore, understanding the actual behavior of outdoor scenes is necessary for effective removal
and improvement of the overall performance of computer vision systems. Although the classification of
atmospheric/weather conditions has been well explored, reporting on the same in multiclass problem using
Convolutional Neural Networks (CNNs) has received very little attention. In response to address this disparity,
we propose a new CNN architecture named the ‘‘Adversarial Weather Degraded Multi-class scenes Classifi-
cation Network (AWDMC-Net)’’ for outdoor scene classification degraded by different atmospheric/weather
conditions. The proposed network is based on adopting different combinations of skip connections in building
blocks of CNN there after adaptively pruning the least important convolutional kernels from the network.
For effective pruning, we proposed a new pruning criterion named ‘‘Entropy Guided Mean-𝑙1 Norm’’ that can
adaptively evaluate the importance of convolutional kernels by considering the filters and their corresponding
output feature maps. The prediction performance of our proposed model was evaluated on our newly designed
E-TUVD (Extended Tripura University Video Dataset) and on publicly available benchmark datasets. Our newly
created video dataset, E-TUVD, consists of 147 video clips (approximately 793800 frames) that represent six
atmospheric/weather conditions, namely, fog, dust, rain, haze, poor illumination, and clear day conditions.
Our proposed model achieves an accuracy of 93.85%, a specificity of 93.79%, and a sensitivity of 94.18%
on our dataset, which outperforms the prevailing standard CNN models and recent state-of-the-art methods
for atmospheric/weather classification tasks. Furthermore, our network also reduces the time consumption for
atmospheric/weather classification tasks, and therefore mostly meets the requirements of practical applications
in real-world scenarios.
. Introduction

During the last few decades, human perceptibility to the appearance
f color and contrast of outdoor scenes through the atmosphere has
een well studied. While atmospheric/weather conditions have a strong
mpact on our everyday lives, they also alter the appearance of outdoor
cenes (Narasimhan and Nayar, 2003). Generally, camera provides
ich visual information regarding the presence of various candidate
bjects in the outdoor scenes and becomes one of the essential con-
entional sensors in the computer vision community (Shirmohammadi
nd Ferrero, 2014). Most computer vision systems for surveillance,
raffic monitoring, augmented reality, vehicle navigation, and other
ssistant driving systems are currently designed to perform under clear
isibility (Kroemer et al., 2010; Liu et al., 2016; Martinez-Martin and
obil, 2017; Bore et al., 2018; Cai et al., 2021; Guo et al., 2018; Chen
t al., 2012), but unfortunately this is not always the case. In general,
he appearance of outdoor scenes is mainly altered for two reasons:

∗ Corresponding author.
E-mail address: mrinalkantibhowmik@tripurauniv.ac.in (M.K. Bhowmik).

– Atmospheric/Weather Effects: The atmospheric/weather effect
is caused by fog, dust, rain, and other factors that reduce visibility
and cause images to lose contrast and color information. Such
conditions basically alter the key characteristics (i.e., intensity,
color, polarization, and coherence) of sunlight due to scattering
by atmospheric particles.

– Natural Light/Illumination Effects: Conversely, in an outdoor
environment, the illumination effect is mostly caused by varia-
tions in the intensity of sunlight at different times of the day.

Thus, the applicability of various computer vision systems, in-
cluding outdoor video surveillance and vehicle aided driving sys-
tems, is strongly affected by various atmospheric/weather phenomenon
(i.e., fog, haze, dust, rain, etc.) (Chen et al., 2012; Narasimhan and
Nayar, 2002). This is because the several candidate objects (such as ve-
hicles, pedestrian, animals, etc.) present in the scenes (so as acquired by
conventional sensors (i.e., camera)) to be detected/recognized (which
https://doi.org/10.1016/j.cviu.2022.103498
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Fig. 1. (a) Entropy values of image frames at different atmospheric/Weather conditions; (b) Mean lightness values of image frames at different atmospheric/Weather conditions
(All the frames in different atmospheric/weather conditions are selected from our E-TUVD Dataset (Roy and Bhowmik, 2020)).
is an integral part of many computer vision systems) have insufficient
detailed appearance information due to the high loss in contrast in
such adverse atmospheric/weather conditions. Therefore, this is a fun-
damental problem for many vision systems to be dealing with and has
attracted a significant attention from the academic, research, and indus-
trial communities. As these degradation conditions strongly affect the
normal functioning of many computer vision systems, understanding
their actual behavior on scene appearances provides valuable informa-
tion for decreasing their influence on assistance systems. It is obvious
that due to the presence of extreme atmospheric/weather conditions,
light passing through the atmosphere is attenuated due to absorption
and scattering (Narasimhan and Nayar, 2002). As a consequence, only a
small portion of the light is reflected and reaches the observer, which
in turn decreases the contrast and visibility in the image. However,
the actual characteristics of absorption and scattering are complex and
significantly depend on the types, orientations, sizes, and distributions
of particles of atmospheric/weather conditions (Narasimhan and Nayar,
2002). For example, in the case of static atmospheric/weather con-
ditions (i.e., fog, haze, and dust), constituent particles are too small
(1–10 μm) (Garg and Nayar, 2004) to be visible to a camera, whereas
the associated particles of dynamic atmospheric/weather conditions
(i.e., rain and snow) are larger (0.1–3.5 mm) (Garg and Nayar, 2004),
and are therefore visible in the image. Hence, the characteristics
of atmospheric scattering models (i.e., composed of attenuation and
air light) can be used to characterize the effects of static conditions
but are not appropriate to describe the effect of dynamic condi-
tions. Conversely, the study of dynamic weather conditions involves
a stochastic model that acquires the effects of a large particle moving
at high speeds (Garg and Nayar, 2004). This aspect indicates that the
weather affecting an image must be recognized before any restoration
processing is performed.

On the other hand, understanding the atmospheric/weather ef-
fects pertaining to outdoor scenes and their effective classification has
promising prospects in a variety of applications, such as:

– Border Security and Surveillance: Essentially, North-Eastern
states and other states of India share international borders. Com-
mercialized cameras are installed by governments in border areas
for continuous monitoring, but these cameras appear fragile un-
der challenging atmospheric/weather degradation conditions. In
such extreme situations, there is a chance for suspected intruders
to enter foreign lands and perform illegal or suspicious activities
that may go undetected by an unassisted vision system because
of the substantial contrast loss.

– Automatic Driving Systems: Many industries are attempting to
cope with challenges due to illumination/weather degradation
conditions; however, such degraded conditions will still impair
the vision capability of installed cameras and create confusing
reflections that may result in problems for self-driving cars.
2

Additionally, atmospheric/weather conditions have a strong im-
pact on air transport. A number of flight paths are often rerouted or
canceled every year during the winter season or rainy seasons due
to the poor visibility conditions experienced at different national/
international airports in India and other countries across the globe.
Other application areas include anomaly detection, route monitoring
and obstacle identification in paths for robots (i.e., robotic vision) (Lins
et al., 2015; Bodenhagen et al., 2014; Anghinolfi et al., 2013), and
forest inventories for wild life monitoring and tracking (Zhang et al.,
2016a; Kellenberger et al., 2019). Therefore, there is a need for the
development of a vision based technique to study to what extent
and in what sense such challenging visual conditions can be dealt
with, in order to enable benefits for a broader range of computer
vision applications. In real-world scenarios, understanding the effects of
atmospheric/weather conditions on scene appearance appears to be a
simple problem for human visual systems, but it is a difficult challenge
for computer vision systems to decide whether a given image is foggy
or clear day conditions. For example, Fig. 1 shows the characterization
of image frames using entropy and mean lightness under different at-
mospheric/weather conditions (i.e., degradation due to fog, haze, dust,
rain, poor illumination, and clear day conditions). The image frames
are selected from our own created E-TUVD dataset (Roy and Bhowmik,
2020). It can be observed that the statistical feature values (i.e., entropy
and mean lightness values) are higher under clear day conditions and
lower under poor illumination conditions. However, these features are
usually restricted to certain classes of atmospheric/weather conditions
and cannot be applied to a diverse set of atmospheric/weather applica-
tions (i.e., in the case of multiclass atmospheric/ weather conditions).
The same can be observed in Fig. 1, where the difference between these
two feature values for the asymmetric characterization of fog and haze
conditions is smaller. Thus, understanding the atmospheric/weather
conditions pertaining to the scenes for effective restoration of the image
quality in poor visibility conditions is a significant task in computer
vision and increases the road safety, thereby monitoring the vehicle
speed in response to real-time atmospheric/weather situations.

In recent years, significant contributions have been made as an
effort to investigate the effectiveness of atmospheric/weather clas-
sification problems. Most of these approaches are either based on
designing conventional handcrafted features or based on the applica-
tion of Convolution Neural Networks (CNNs), as shown in Table 1.
Although researchers have designed many handcrafted features (Chen
et al., 2012; Roser and Moosmann, 2008; Lu et al., 2014; Kurihata
et al., 2005; Pavlic et al., 2013; Zhang and Ma, 2015) for weather
classification, these features are usually restricted to certain classes
of atmospheric/weather conditions and cannot be applied to diverse
ranges of atmospheric/weather applications. Meanwhile, most of these
handcrafted feature based approaches as reported in Chen et al. (2012),
Roser and Moosmann (2008) and Zhang and Ma (2015), may provide
noticeable results for images acquired in controlled environments but
miss the mark for atmospheric/ weather classification of images taken
in uncontrolled environments, i.e., without any sky features. Recently,
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Convolution Neural Networks (CNNs) have gained a significant impact
in the area of feature extraction and have shown a noticeable per-
formance in comparison to conventional approaches. Inspired by the
outstanding performance of CNNs, several works have been conducted
to adopt CNNs in atmospheric/weather classification problems (Lu
et al., 2014; Elhoseiny et al., 2015; Guerra et al., 2018; Zhu et al.,
2016; Lin et al., 2017). Most of these aforementioned techniques per-
form two class weather classification (Chen et al., 2012; Roser and
Moosmann, 2008; Lu et al., 2014; Kurihata et al., 2005; Pavlic et al.,
2013; Zhang and Ma, 2015; Elhoseiny et al., 2015). Although some
researchers have reported the performance of CNNs for multiclass
weather classification problems (Guerra et al., 2018; Zhu et al., 2016;
Lin et al., 2017), these methods either used basic CNNs as a feature
extraction method from pre-processed segmented images or combined
hand-crafted weather features with basic CNN extracted features and
classified using conventional classifiers.

Focusing on the importance of automatic understanding and clas-
sification of the atmospheric/weather effects using CNNs on scene
appearance, our primary contributions include the following:

1. We proposed a new end-to-end network named AWDMC-Net
(Adversarial Weather Degraded Multi-class scenes Classification
Network) for the classification of different atmospheric/weather
degraded outdoor scenes. The proposed network is based on the
multiple skip connections on basic building blocks of CNN and
adaptive pruning of convolutional kernels/filters. To the best of
our knowledge, this is the first application of a deep learning
framework for designing a new architecture based on holis-
tic image sequences for multiclass atmospheric/weather
classification on real-time outdoor scenes.

2. For efficient and effective pruning, we proposed a new pruning
criterion called ‘‘Entropy Guided Mean-l𝟏 Norm’’. While the
current pruning criteria only consider only the filter weights
for calculating the scores of the filters, the proposed pruning
criterion adaptively considers the convolutional kernels/filters
and their corresponding output feature maps for evaluating the
filter/kernel importance in the network.

3. We conduct extensive experiments on available benchmarks and
our newly designed video dataset that contains 147 video
clips (i.e., approximately 793 800 frames), each spanning 1–
5 min of duration, named the ‘‘Extended Tripura University
Video Dataset (E-TUVD)’’. The dataset contains six classes of
atmospheric/weather degradation conditions. The dataset has
more weather categories and a wider application range than
those corresponding to other similar available datasets.

4. We also explored the prediction performance of fifteen well-
known CNN models pre-trained on the ImageNet Challenge
Dataset (Deng et al., 2009) as a fixed feature extraction
module and a fine tuning module for the classification of
atmospheric/weather degraded image sequences and compared
them with our proposed AWDMC-Net model. The advantages
and perception capability of CNNs to automatically extract im-
age features are therefore fully explored in this manuscript for
the classification of atmospheric/weather conditions.

Paper Outline. Section 2 provides a brief survey on different at-
ospheric/weather classification algorithms and the previous datasets
sed for atmospheric/weather classification tasks. Section 3 describes
he E-TUVD dataset under different atmospheric/weather conditions. In
ection 4, a detailed description of our proposed atmospheric/weather
lassification architecture (AWDMC-Net) is provided. Section 5 presents
thorough evaluation of the proposed architecture on the created

ataset and other benchmark datasets, followed by a discussion on the
erformance comparison with respect to the state-of-the-art methods.
inally, the conclusion of the paper is provided in Section 6.
3

2. Related work

Numerous atmospheric/weather conditions have been classified de-
pending on a vast range of computer vision algorithms. This section
provides an overview of the most related work on atmospheric/weather
classification, which can be considered a kind of scene recognition.
Additionally, an overview of various public and private datasets used
by researchers for atmospheric/weather classification tasks is explored
in this section.

2.1. Overview of existing methodology

There are several works in the literature to construct atmospheric/
weather recognition and classification algorithms for driving assis-
tance. In this subsection, we categorized the atmospheric/weather
classification algorithms into two major approaches: conventional fea-
ture/learning based approaches, and deep learning based approaches.
An overview of various representative methods in each of the afore-
mentioned approaches is shown in Table 1.

Conventional Feature/Learning Based Approach. The
tmospheric/weather classification algorithms based on this approach
se visual characteristics and features (i.e., local and global features) to
ecognize/ classify weather conditions, thereby dealing with variations
n view, lighting, and of objects in scenes. In Kurihata et al. (2005),
. Kurihata et al. recognized raindrops using image features from
rincipal component analysis (PCA) and further adopted template
atching to detect raindrops. On the other hand, Roser and Moosmann

2008) used single monoscopic color images for the extraction of
istogram based features from blocks defining regions of interests
ROIs). Here, five sets of histogram features, including local contrast,
inimum brightness, sharpness, hue, and saturation, were extracted

rom ROI, and the weather conditions were classified using a support
ector machine (SVM). In Yan et al. (2009), X. Yan et al. also used
hree sets of features, including the histogram of gradient amplitude
HGA), HSV color histogram (HHSV), and road information (RI), which
re extracted from images captured by an in-vehicle vision system,
nd employed the Real AdaBoost classifier to achieve the weather
lassification task. Likewise, Zhao et al. (2011) developed a general
ramework to extract features signifying both the autocorrelation of
ixel-wise intensities over time and the maximum directional length
f rain streaks or snowflakes. Thereafter, the classification of different
eather conditions using the C-SVM classifier designate the efficiency
f the extracted features. In Chen et al. (2012), Z. Chen et al. developed
method for the classification of weather conditions using a support

ector machine (SVM) classifier trained on the sky region features
f panorama images. To avoid interference from non-sky regions,
hresholding based segmentation was used. Then, a set of seven features
re extracted, including Scaling Invariant Feature Transform (SIFT),
ocal Binary Pattern (LBP), Hue (H), Saturation (SA), Brightness (BR),
radient Magnitude Computed from Sobel Operator (GM), and residual
omputed from reference image (M). For a further increase in the classi-
ication accuracy, multi-pass active learning was adopted to choose the
raining set. For instance, Li et al. (2014) used a set of four features,
uch as the power spectrum slope (PPS), contrast, noise, and saturation,
o classify weather phenomena where every SVM classifier on the non-
eaf node of the decision tree was constructed. In Song et al. (2014),
. Song et al. used five sets of features, including inflection point

nformation (IIP), Power Spectrum Slope (PPS), Edge Gradient Energy
EGE), contrast, noise, and saturation, to discriminate multiple weather
onditions. Then, weather classification was performed using the K-
earest Neighbor (KNN) classifier based on these extracted feature

ets. In Zhang and Ma (2015), Z. Zhang et al. used a learning based
ethod for the classification of multiclass weather images. The method
ses multiple local and global features to represent various weather
onditions. For instance, channels a and b in the LAB color space of
he sky region are used to specify sunny weather, Histogram of Gradient
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(HOG) is used to specify rainy weather, Histogram of Intensity (HOI)
is used to specify snowy weather, and the Dark Channel Prior (DCP)
method (He et al., 2011) is used to specify haze weather. Addition-
ally, some global features (i.e., contrast and saturation) are used to
discriminate multiclass weathers. Then, multiple kernel learning (MKL)
is used to learn an adaptive classifier and fuse these local and global
features, thereby classifying the weather conditions. Likewise, Zhang
et al. (2016b) further extended their previous weather classification
method (Zhang and Ma, 2015), where selection and classification of
multiple weather features were performed via learned sparse code
followed by the MKL algorithm. In Chu et al. (2017), W.T. Chu et al.
observed the correlations between the properties of various weather
conditions and developed computational models based on a random
forest classifier for weather recognition. Furthermore, in Wang et al.
(2018), S. Wang et al. fused the real-time meteorological weather data
(i.e., wind speed (WS), temperature (TEMP), humidity (HUM), and time
(TM)) with the image features (i.e., Dark Channel (DC)) to recognize
different weather conditions using the Adaboost classifier.

Deep Learning Based Approach. Deep learning is often considered
neural network with deep structures. The notion behind the concept

f neural networks originated in the 1940s (Pitts and McCulloch,
947) and became widespread with the advancement of the back-
ropagation algorithm by Rumelhart et al. (1986). Similar to many
ther topics, several methods have been established in the litera-
ure for atmospheric/weather image recognition/classification tasks,
hereby utilizing the convolution structure of deep models. Elhoseiny
t al. (2015) adopted CNN to resolve the task of weather classifica-
ion where transfer learning of the AlexNet model pre-trained on an
mageNet Challenge Dataset (Deng et al., 2009) was used, thereby
eplacing the output layer with two neurons, i.e., one representing
loudy conditions and the other representing sunny conditions. In
ddition, Zhu et al. (2016) used three existing network structures,
lexNet, modified AlexNet, and GoogLeNet, as fine-tuning modules
nd without fine-tuning modules for weather classification. In Lu et al.
2014), C. Lu et al. constructed 4717 dimension feature vectors con-
isting of CNN features and five handcrafted weather features. The
NN features corresponding to each weather degraded image were
omputed using AlexNet, and five handcrafted features were computed
efining sky and shadow regions (Lalonde et al., 2010), contrast,
eflection, and haze in an image. The feature vectors concatenating
ix feature components corresponding to each weather degraded im-
ge were used for training the latent SVM framework to classify the
eather conditions. For instance, Li et al. (2017) developed a multi-

ask CNN framework to concurrently address the weather classification
ask. The framework consists of two parts: weather cue semantic seg-
entation using Shelhamer et al. (2017) and weather classification
sing fine tuning of the VGG-16 layers. In Lin et al. (2017), D. Lin
t al. highpoints the significance of regional cues for the construction
f features Table 2. Overview of Previous Datasets Used for Atmo-
pheric/Weather Classification Tasks in Comparison to our E-TUVD
ataset related to the classification of weather conditions. A region

election and concurrency model (RSCM) was proposed based on a deep
NN to overcome these tasks. First, the images were segmented into
ifferent regions using Joulin et al. (2012), Rubio et al. (2012) and
oulin et al. (2010), and then for each region a latent variable was
sed to specify the region containing discriminating weather related
nformation. Second, weather assessment/recognition was performed
sing the Siamese architecture of neural networks (Chopra et al., 2005;
adsell et al., 2006), thereby independently training the RSCM for
ach considered weather class. Similarly, Guerra et al. (2018) used
tate-of-the-art pre-trained CNNs (i.e., CaffeNet, PlacesCNN, ResNet-
0/101/152, and VGG-16/19) to extract deep features from super pixel
ounding masks of weather images. Then, the extracted features from
ach individual pre-trained CNN were classified independently using
he SVM classifier. In Shi et al. (2018), Y. Shi et al. used Mask R-

NN (He et al., 2017) to extract the foreground regions and foreground

4

edges in the visual weather images and further superimposed them into
the same-scale matrix to classify weather conditions using the VGG-
16 model. In addition, An et al. (2018) used AlexNet and ResNet for
deep feature extraction and combined a multiclass SVM to perform
weather classification. In Zhao et al. (2018), B. Zhao et al. presented
a CNN-RNN architecture consisting of a CNN (convolutional/pooling
layers of VGG-16 Russakovsky et al., 2015) to extract discrimina-
tive features, a channel-wise attention module to recalibrate feature
responses, and a convolutional Long Short-Term Memory (LSTM) to
estimate the relationships and classify different atmospheric/weather
conditions based on their labels. Ibrahim et al. (2019) proposed a
deep CNN framework named ‘WeatherNet’. The framework is based
on transfer learning of the ResNet-50 model and comprises of four
deep CNN models, i.e., NightNet, GlareNet, Precipitation Net, and
FogNet, to recognize dawn/dusk, day, night-time, glare, rain, snow,
and fog, respectively. In Zhao et al. (2019), B. Zhao et al. proposed
a multi-task framework for classification of five weather conditions
(i.e., sunny, cloud, fog, rain, and snow). The proposed framework is
divided into four modules i.e., the shared layers, the classification
branch, the segmentation branch and the fusion of classification feature
and segmentation feature. In this framework, the share layers are
similar to the five consecutive convolutional/pooling layers of VGG-
16 (Russakovsky et al., 2015) with incorporated average pooling and
are further used for both weather cue segmentation and classification
of weather conditions. Then, the share layers are divided into weather
classification and segmentation tasks. The weather-cue segmentation
module comprises shared layers followed by convolutional and de-
convolutional layers where the features from the preceding layers are
taken into consideration as proposed by Long et al. (2016). Finally, the
weather-cues the segmentation features are fused with the classification
features for weather classification tasks. Xia et al. (2020) proposed a
CNN model entitled ‘ResNet15’ for classifying and recognizing weather
images based on fine-tuning of the ResNet-50 CNN architecture. Also,
Al-Haija et al. (2020) used self-reliant framework based on transfer
learning of ResNet-18 CNN architecture pre-trained on ImageNet Chal-
lenge Dataset (Deng et al., 2009) for four-class atmospheric/weather
classification task including sunrise, shine, rain, and cloudy.

2.2. Overview of atmospheric/weather classification dataset

The rapid design of algorithms for atmospheric/weather classifica-
tion tasks originates from the accessibility of benchmark datasets defin-
ing various representative challenges under such degraded conditions.
Several benchmark datasets are designed to evaluate the performance
of atmospheric/weather classification methods. In this subsection, a
review of most of the related datasets used by the research commu-
nities for atmospheric/weather classification is presented. Each of the
available datasets are image based datasets. Among these datasets, the
RESIDE-𝛽/RESIDE-Standard dataset (Li et al., 2018) contains 90 967
images in two classes of weather conditions i.e., haze and clear day
conditions. Conversely, the WeatherNet dataset (Ibrahim et al., 2019)
contains a diverse set of 23 865 images in seven different weather situa-
tions, including day, night, glare, fog, rain, snow, and clear conditions.
In addition, MWD (Lin et al., 2017) provides a set of 65 000 images
under six weather conditions: sunny, clear, rain, snow, haze, and
thunder. To form a large-scale weather dataset, Image2Weather (Chu
et al., 2016) contains 255 837 images in sunny, cloudy, snow, rain,
and fog weather conditions. Weather2Dataset (Zhu et al., 2016) con-
tains 16 635 images in four different atmospheric/weather conditions,
including sunny, rain, blizzard, and fog situations. Additionally, the
MWI dataset (Zhang and Ma, 2015) contains 20 387 images in four
different atmospheric/weather conditions (i.e., sunny, rain, snow, and
haze situations). On the other hand, RFS dataset (Guerra et al., 2018)
provided 3300 images under three weather conditions (i.e., rain, fog,
and snow conditions), and WeatherDataset-4 (Xia et al., 2020) provided
7983 weather degraded images under fog, rain, snow, and sunny
conditions. Rather than elaborately describing the existing datasets, the
key highlights of the datasets are summarized in Table 2.
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Table 1
Overview of previous works for atmospheric/weather classification/Recognition.

Approach Authors/Year Method used Category/
Conditions

Dataset Performance
evaluation

Conventional
feature/
Learning
based
approach

H. Kurihata et
al./2005

Kurihata et al.
(2005)

Principal Component
Analysis (PCA)

BC/R Private Dataset Re-0.24;
Pr-0.87

M. Roser et
al./2008

Roser and
Moosmann (2008)

Histogram Features (BR,C,SH,SA,H), and
SVM

MC/CD;HR;LR Private Dataset CE- 5.2%

X. Yan et
al./2009

Yan et al. (2009) Features (HGA,HHSV,RI), and Adaboost MC/S;CL;R Private Dataset Acc- 90.62%

X. Zhao et
al./2011

Zhao et al. (2011) Features (AC,MB,SA), and C-SVM MC/F;R;SN;IV Private Dataset Acc- 92.37%

Z. Chen et
al./2012

Chen et al. (2012) Sky Region Extraction, Features (SIFT, LBP,
H,SA,V,GM,M), MKL, and SVM

MC/S;CL;OV Private Dataset Acc- 95.00%

Q. Li et al./2014 Li et al. (2014) Features (PPS,C,N,SA), DT, and SVM MC/CD;OV;F;R WILD and Private Dataset CE- 10.64%

H. Song et
al./2014

Song et al. (2014) Features (IIP,PPS,EGE,C,SA,N), and KNN MC/S;SN;F;R Private Dataset Acc- 90.00%

Z. Zhang et
al./2015

Zhang and Ma
(2015)

Local (LAB,HOG,HOI,DCP) and Global
Features (C,SA), MKL, and Adaptive
Classifier

MC/S;SN;R;H MWI Dataset Acc- 0.5944

Z. Zhang et
al./2016

Zhang et al.
(2016b)

Local (LAB,HOG,HOI,DCP) and Global
Features (C,SA), DL, MKL, and SVM

MC/S;SN;R;H MWI Dataset Pr- 0.73; Re-
0.71; FM- 0.72;
Acc- 0.71

W.T. Chu et
al./2017

Chu et al. (2017) Correlation, and Random Forest Classifier MC/S;CL;SN;R;F Image2Weather Acc- 80.00%

S. Wang et
al./2018

Wang et al. (2018) Weather Features (WS, TEMP, HUM, TM),
Image Features (DCP), and Adaboost

MC/S;R;H;SN Private Dataset Acc- 83.09%

Deep
learning
based
approach

M. Elhoseiny et
al./2015

Elhoseiny et al.
(2015)

AlexNet where the output layer replaced
with two nodes

BC/CL;S Private Dataset Acc- 82.20%

Z. Zhu et
al./2016

Zhu et al. (2016) AlexNet, Modified AlexNet, and GoogleNet
(With and Without Fine Tuning)

MC/S;RS;B;F Weather Dataset Acc- 94.50%

C. Lu et al./2014 Lu et al. (2014) Handcrafted Features (SRD (SIFT and Mean
HSV), SD-R (Wang et al., 2018), IM, C,
DCP), CNN Feature (AlexNet), SVM

BC/CL;S Sun, Labelme, and Flickr
Dataset

Acc- 91.4%

X. Li et al./2017 Li et al. (2017) Weather-Cues Semantic Segmentation using
(Rumelhart et al., 1986) and Classification
using Fine Tuning of VGG-16

BC/CL;S Dataset (Lu et al., 2014) Acc- 90.70%

D. Lin et
al./2017

Lin et al. (2017) Region Selection and Concurrency Model
(RSCM)

BC/S;CL;R;
S;N;H;T

MWD Dataset and Dataset
(Lu et al., 2014)

Acc- 90.07%

J.C.V. Guerra et
al./2018

Guerra et al.
(2018)

Super Pixel Mask, CNN Features
(ResNet50/101/152, Places CNN,
VGG-16/19, CaffeNet), and SVM

MC/R;F;SN RFS Dataset mAP- 68% to
81%

Y. Shi et
al./2018

Shi et al. (2018) Mask R-CNN, and VGG-16 MC/S;F;SN;R Private Dataset Acc- 94.71%

J. An et al./2018 An et al. (2018) CNN Features (AlexNet, and ResNet), and
SVM

MC/S;C;H;SN Dataset (Lu et al., 2014)
(Liu et al., 2018), and
D-Hazy (Ancuti et al., 2016)

Acc- 95.00%

B. Zhao et
al./2019

Zhao et al. (2018) CNN-RNN (Recurrent Neural Network)
Architecture

MC/S;CL;F;
SN;MO;R

TA Dataset and MLWC
Dataset

Pr- 0.92; Re-
0.82; F1-0.87;

M.R. Ibrahim et
al./2019

Ibrahim et al.
(2019)

Parallel Deep CNN models via Transfer
Learning of ResNet-50 Model

MC/ D;N;G;F;
R;SN;CD

WeatherNet Dataset Pr- 0.90; Re-
0.87;
F1-0.88;Acc-
93.8%

B. Zhao et
al./2019

Zhao et al. (2019) Weather Cue Segmentation using (Long
et al., 2016) and Classification (VGG-16)

MC/S;CL;F;R;SN Dataset (Lu et al., 2014) and
Private Dataset

Acc- 95.09%

J. Xia et
al./2020

Xia et al. (2020) ResNet15 (Fine Tuning of ResNet50) MC/F;R;SN;S WeatherDataset-4 Acc- 88.30%

Q.A. Al-Haija et
al./2020

Al-Haija et al.
(2020)

Transfer learning of ResNet-18 MC/SR;SH;R;CL Multi-class Weather Dataset Acc- 98.22%

BC—Binary Classification; MC—Multi-Class Classification; F—Fog Condition; H—Haze Condition; D—Dust Condition; R—Rain Condition; HR—Heavy rain; LR—Light Rain; PI—Poor
Illumination Condition; LL—Low Light Condition; CD—Clear Day Condition; S—Sunny Day Condition, SN—Snow Condition; CL—Cloudy Condition; T—Thunder; B—Blizzard; OV—
Overcast; IV—Illumination Variation; D—Day; N—Night; RS—Rain Storm; G—Glare; MO—Moist; SR—Sunrise; SH—Shine; SIFT—Scaling Invariant Feature Transform; LBP—Local
Binary Pattern; H—Hue; SA—Saturation; V/BR—Brightness; GM—Gradient Magnitude Computed from Sobel Operator; M—Motion (residual computed from reference image );
LAB—a and b channels in the LAB color space; HOG—Histogram of Gradient; HOI—Histogram of Intensity; DC/ DCP—Dark Channel/ Dark Channel Prior; HGA—Histogram
of Gradient Amplitude; HHSV—Histogram of HSV Color Space; PPS—Power Spectrum Slope; N—Noise; DL—Dictionary Learning; MKL—Multiple Kernel Learning; DT—Decision
Tree; SVM—Support Vector Machine; IIP—Image Inflection Point; EGE—Edge Gradient Energy; KNN—K-Nearest Neighbor; C—Contrast; SH—Sharpness; WS—Wind Speed; TEMP—
Temperature; HUM—Humidity; TM—Time; SRD—Sky Region Detection; HSV—HSV Color Space; SD-R—Shadow Detection and Ranking; IM—Image Matting; TA Dataset—Transient
Attribute Dataset; MLWC—Multi-Label Weather Classification Dataset; Acc—Accuracy; Pr—Precision; Re—Recall; F1/FM—F-Measure; CE—Classification Error; mAP—mean Average
Precision.
5
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Table 2
Overview of previous datasets used for atmospheric/weather classification tasks in comparison to our E-TUVD dataset.

Dataset Weather conditions Type of
dataset

No. of Images/
Frames/Videos

Resolution (in
Pixels)

Format Availability

RESIDE-𝛽/
RESIDE-Standard

Li et al. (2018) H/CD IBD 90 967 [178 × 178] to
[620 × 460]

.jpg/ .png A

Weather2Dataset Zhu et al. (2016) 𝑆∕𝑅∕𝐵∕𝐹 IBD 16 635 NP NP NA
RFS Guerra et al. (2018) R/F/SN IBD 3300 [560 × 420] .jpg A

MWD Lin et al. (2017) S/CL/R/SN/H/T IBD 65 000 [3456 × 1801] to
[300 × 121]

.jpg A

MWI Zhang and Ma (2015) S/R/SN/H IBD 20 387 NP NP A
WeatherNet Ibrahim et al. (2019) DA/N/G/F/R/SN/CD IBD 23 865 NP .jpg/ .png NA
Image2Weather Chu et al. (2016) S/CL/SN/R/F IBD 255 837 NP NP NA
WeatherDataset-4 Xia et al. (2020) F/R/SN/S IBD 7983 [256 × 256] .jpg A
E-TUVD [Our Dataset] F/H/D/R/PI/CD FBD 793 800 (approx.) [1920 × 1080] .jpg A

F—Fog Condition; H—Haze Condition; D—Dust Condition; R—Rain Condition; PI—Poor Illumination Condition; LL—Low Light Condition; CD—Clear Day Condition; S—Sunny
Day Condition, SN—Snow Condition; CL—Cloudy Condition; T—Thunder; B—Blizzard; DA—Day; N—Night; G—Glare; FBD—Frame Based Dataset; IBD—Image Based Dataset;
A—Available; NA—Not Available; NP—Not Provided.
2.3. Significant gaps and our contributions to these aspects

Although the algorithms and datasets reviewed in Tables 1–2 have
advanced the research for atmospheric/weather classification, they
have several limitations:

1. As found in the literature, most of the research works for atmo-
spheric/weather classification and recognition were performed
on public/private datasets (as shown in Table 2). However, these
datasets are restricted in either scale or quantity for training
traditional deep learning models. Although the Image2Weather
dataset (Al-Haija et al., 2020) contains 255 837 images for
weather classification tasks, this dataset is not publicly accessible
to the research community. Moreover, to date, no weather
dataset is available for the research community containing dust
conditions as one of the pre-defined challenges, which is also
one of the major causes of atmospheric/weather phenomena in
outdoor settings. In contrast, our E-TUVD (Roy and Bhowmik,
2020) dataset contains a diverse set of atmospheric/weather
challenges, including dust conditions, for evaluating standard
baseline models in such complex situations. Additionally, com-
pared to previous datasets, our dataset contains more frames
depicting urban scenes in each of the considered weather classes.

2. A comprehensive survey of the literature has revealed the useful-
ness of atmospheric/weather classification tasks in a vast range
of computer vision applications. Although different national and
international researchers proposed and published various re-
search papers (as shown in Table 1) for atmospheric/weather
classification tasks using CNNs, most of these research papers
either used the existing CNNs pre-trained on the ImageNet Chal-
lenge Dataset (Deng et al., 2009) as a fine-tuning/transfer learn-
ing module (Elhoseiny et al., 2015; Ibrahim et al., 2019; Zhao
et al., 2019) or used them as a feature extraction method or fused
conventional features with basic CNN based features, and clas-
sified them using conventional classifiers (Guerra et al., 2018;
An et al., 2018). Although very few works have been pro-
posed in the literature for establishing new CNN based frame-
works/algorithms for atmospheric/weather classification (Lin
et al., 2017; Li et al., 2017; Shi et al., 2018; Zhao et al.,
2019), these algorithms involve various pre-processing tech-
niques for region detection (i.e., sky and boundary region detec-
tion), which makes the framework highly reliant on the success
of the pre-processing steps.

To advance this area, in our present work different skip connec-
ions and pruning criteria on building blocks of CNNs are adopted to
esign a novel architecture named AWDMC-Net, for the classification

f atmospheric/weather degraded image sequences.

6

3. Dataset description

The existence of atmospheric/weather challenges in outdoor scenes
has remained a significant research gap for both computational photog-
raphy and high-level computer vision tasks. Advancement in this area,
thereby focusing on such degraded conditions, will directly benefit
various blooming computer vision applications, including video surveil-
lance and autonomous driving. To develop and test complex computer
vision algorithms in extreme atmospheric or weather degraded condi-
tions, a benchmark dataset is required to define such complex real-
world scenarios. In the literature, various image based datasets are pro-
posed to meet the specific necessities of atmospheric/weather classifica-
tion tasks (as reviewed in Table 2). However, as atmospheric/weather
challenges have a strong impact on various high-level computer vision
tasks, our motive is to provide a video based dataset comprised of
several salient objects in adversarial atmospheric/weather conditions.

The E-TUVD dataset is a pioneering annotated video dataset for
detecting moving objects in degraded atmospheric/weather conditions
(i.e., Fog, Haze, Dust, Rain and Poor Illumination). Other than the
abovementioned five atmospheric or weather degraded conditions, E-
TUVD also contains video clips of clear days. The current dataset con-
sists of 147 video sequences (approximately 793 800 frames) that were
captured in a variety of atmospheric/weather situations. A detailed
description of the dataset video recording conditions, dataset informa-
tion, and ground-truth annotation related to E-TUVD were elaborately
discussed in our previous work (Roy and Bhowmik, 2020). Each frame
of the E-TUVD contains various types of moving objects; in addition,
the scenes were acquired mostly in urban areas, which are subjected
to larger surface variations because of the existence of objects such as
trees, houses, warehouses, office buildings, streets, and residents. All
the characteristics of the E-TUVD dataset point to its importance in
the realm of moving object identification and high-level vision tasks
in outdoor situations with a variety of atmospheric/weather-related
problems. The dataset is available for the research community in E-
TUVD (2020). In our present work, we used the frames from E-TUVD
for atmospheric/weather classification.

The overall sample sizes of the E-TUVD dataset in different atmo-
spheric/weather conditions used for training, validation, and testing
of our proposed AWDMC-Net model are shown in Table 3. From the
E-TUVD dataset, we have selected 60 000 frames randomly consist-
ing of balanced classes of atmospheric/weather conditions (i.e., Fog,
Haze, Dust, Rain, Poor Illumination, and Clear Day). For effective
training and testing of the proposed AWDMC-Net model with respect to
the atmospheric/weather degraded conditions, frames from the video
clips in each of the considered atmospheric/weather conditions of the-
E-TUVD dataset are selected randomly thereby maintaining certain
timestamps between the consecutive frames so as to reduce the re-
dundancy between the consecutive frames. Moreover, the consecutive
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Table 3
Sample size of E-TUVD used for Training, Validation, and Testing of the proposed AWDMC-Net model.

Category Atmospheric/Weather conditions Total

Foggy condition Haze condition Dust condition Rain condition Poor illumination Clear day

Training and validation set 8000 8000 8000 8000 8000 8000 48 000
Testing set 2000 2000 2000 2000 2000 2000 12 000

Total number of frames 10 000 10 000 10 000 10 000 10 000 10 000 60 000
frames used for our proposed AWDMC-Net model are different with
respect to the presence of several salient and candidate objects in the
atmospheric/weather degraded scenes. For effective labeling (i.e., an-
notation) of the captured video clips of the E-TUVD dataset with respect
to the atmospheric/weather categories, five research members of the
research laboratory were selected and trained to ensure uniformity
in labeling of atmospheric/weather conditions. During the annotation,
certain guidelines are provided to the annotators related to what to
label, what are the class labels, and how to assign class scores. Each
of the annotators are asked to freely view the video clips assigned
to them and are asked to assign the class scores [i.e., either 0 to
1] for each video clip belonging to each of the atmospheric/weather
conditions. Also, the annotators were instructed that depending on
their perception of the atmospheric/weather conditions pertaining to
the scenes, they have to assign the class label ‘1’ to that perceived at-
mospheric/weather condition and the remaining atmospheric/weather
conditions need to assign the class label ‘0’. Moreover, the annota-
tors were also instructed to assign class label ‘1’ to only one of the
considered atmospheric/weather conditions of the E-TUVD dataset.
Depending upon this protocol, five different atmospheric/weather class
labels will be received from five different annotators for each of the
video clips of the E-TUVD dataset. Once the five reference class labels
for each of the video clips of E-TUVD dataset were obtained, the
final class labels for each of the video clips of the E-TUVD dataset is
generalized depending upon the maximum voting policy scheme. This
is generally performed using a threshold value, T. Thus the final class
label of a particular video clip of the E-TUVD dataset is considered as a
fog condition, if at least 𝑇 (in our study we have considered the value
f 𝑇 as 3) number of research members included it as a fog condition
i.e., thereby assigning class label 1 for the fog condition) and so on
or the other conditions of the E-TUVD dataset. As a result, the final
lass label is the result of the most comprehensive agreement among all
esearch members (i.e., annotators). In general, atmospheric/weather
henomena are described and measured by several variables of the
arth’s atmosphere, such as temperature, humidity, dew point, wind
peed, wind direction, atmospheric pressure, and visibility, accord-
ng to the World Meteorological Organization (WMO) network. The
ariations and interactions of those metrological variables/parameters,
nd how they change over time can provide valuable information
egarding atmospheric information and analysis of the acquired data.
ach video clip of E-TUVD also holds the convenient ground truth
nformation related to these atmospheric variables/parameters and so
n obtained from the Regional Meteorological Department of Tripura.
inally, the atmospheric/weather labels assigned to each of the video
lips of E-TUVD dataset based on maximum voting policy scheme
re validated with the associated meteorological weather information
i.e., atmospheric variables/parameters) of the E-TUVD dataset.

Some of the sample frames of the E-TUVD dataset representing di-
erse sets of atmospheric/weather degradation conditions are displayed
n Fig. 2.

. Network architecture and implementation

In this section, we propose our atmospheric/weather classification
etwork, AWDMC-Net, which stands for the ‘‘Adversarial Weather De-
raded Multi-class scenes Classification Network’’. The sequence of
teps we adopted to achieve the atmospheric/weather classification
ask is described in the upcoming subsections.
7

4.1. Ablation study

Depending upon the number of learnable parameters, different CNN
architectures vary from each other in their characteristics (Chen et al.,
2017; Yamashita et al., 2018). This can be observed by tuning the
kernels and their sizes and the number of neurons in fully connected
layers. In our proposed study, we have studied the characteristics of
various CNN architectures on E-TUVD based on tuning the network
parameters (i.e., the number of learnable parameters, network depth,
number of kernels in each layer, etc.). The comparative analysis of
different prototype networks developed and the training accuracy ac-
quired in each specific case on the E-TUVD dataset are shown in
Table 4. In each of the specific cases, neurons in each of the fully
connected layers are kept fixed in order to avoid the abrupt increase
in the number of learnable parameters. In Table 4, it has been reported
that there is high risk for model overfitting if the number of learn-
able parameters is greater than or equal to the number of considered
samples for training the prototype architectures. Additionally, it can
be observed from Table 4 that the maximum accuracy is obtained
for model 4. This is because the number of kernels in each layer
of our proposed architecture was selected in a way so that the total
number of training samples (i.e., atmospheric/weather degraded image
sequences/frames) was comparatively greater than the total number of
learnable parameters. Therefore, model 4 comprised of five sequentially
stacked convolution blocks is used in our proposed architecture. The
elaborate representation of our proposed architecture is described in
the next subsection.

4.2. Our proposed AWDMC-Net architecture

Based on the characteristics of our dataset, the block diagram of
our proposed CNN architecture for the classification of outdoor scenes
degraded by different atmospheric/weather degradation conditions is
shown in Fig. 3. The multilayer structure of our proposed CNN can
abstract the atmospheric/weather degraded image frames/sequences
layer by layer in order to acquire a higher level of discriminating
feature expression, which significantly affects the efficacy of the at-
mospheric/weather classification. Each of the network components is
elaborated next.

Network Overview.
Let 𝐈∶𝛺 → ℜ𝑑×𝑛𝑇 represent input RGB atmospheric/weather de-

graded image sequences each having a size of 112 × 112 pixels, and
let 𝛺+ be the open bounded subset such that 𝛺 ⊂ ℜ𝑑×𝑛𝑇 . Additionally,
𝐎𝐓 → ℜN𝑐×𝑛𝑇 represents the corresponding label matrix for each image
sequence (I), where 𝑛𝑇 represents the number of training samples, d
denotes the dimension, and N𝑐 denotes the number of classes. Each of
the network components is elaborated next.

Convolutional Layer.
The convolutional layer is the fundamental building component of

CNN architectures. In this layer, the number of kernels (also sometimes
termed as filters) with adjustable weights and biases are used to extract
the discriminating features and represent them as an output feature
map. Let us consider 𝐈𝐅𝐌𝑛−1 as an input feature map (i.e., output feature
map from the 𝑛−1 layer), 𝐂𝑘𝑛 as the convolutional kernel, and 𝑏𝑘𝑛 as the
corresponding bias at the 𝑛th layer. Then, for a 𝑘th output feature map
(

𝐈𝐅𝐌𝑘𝑛
)

at 𝑛th layer, the 𝑟th receptive field inputted from the 𝑛−1 layer

is convolved with the 𝑘th kernel of the 𝑛th layer, and consequently



S.D. Roy and M.K. Bhowmik Computer Vision and Image Understanding 222 (2022) 103498
Fig. 2. Sample frames of the E-TUVD dataset in different atmospheric/Weather degradation conditions (a) Foggy conditions; (b) Haze conditions; (c) Dust conditions; (d) Rain
conditions; (e) Poor illumination conditions; (f) Clear day.
Table 4
Different CNN architectures (Prototypes) studied and their performance on E-TUVD for atmospheric/weather classification.

Model
No

No. of
layers

No. of
convolution
layer

No. of
convolution filters
in each layer

Kernel size
of convolution
layers

No. of
pooling
layers

Kernel size
of the pooling
layers

No. of fully
connected
layers

Neurons
in each
layer

No. of
learnable
parameters

Learning
accuracy
(%)

1 27 4 64,32,16,16 (3,3) 2 (3,3),(3,3) 3 100,50,6 263 612 68.97
2 30 5 16,32,64,32,16 (3,3) 2 (3,3),(2,2) 3 100,50,6 576 598 75.13
3 32 5 64,128,128,64,32 (3,3) 3 (3,3),(2,2),(2,2) 3 100,50,6 586 726 78.35
4 32 5 16,32,64,32,16 (3,3) 3 (2,2),(2,2),(2,2) 3 100,50,6 372 318 90.40
5 33 6 32,64,128,64,32,16 (3,3) 2 (3,3),(2,2) 3 100,50,6 720 406 78.97
6 33 6 16,32,64,64,128,128 (3,3) 2 (3,3),(2,2) 3 100,50,6 4 441 222 32.06
7 32 5 16,32,64,32,16 (3,3) 3 (3,3),(2,2),(2,2) 3 100,50,6 182 348 54.37
8 35 6 8,16,16,32,32,64 (3,3) 3 (3,3),(2,2),(2,2) 3 100,50,6 1 302 038 63.88
9 37 6 128,64,32,32,64,128 (3,3) 4 (3,3),(2,2),(2,2),(2,2) 3 100,50,6 408 892 81.02
10 40 7 8,16,32,32,64,64,128 (3,3) 4 (2,2),(2,2),(2,2),(2,2) 3 100,50,6 783 654 77.05
added the bias. The process is repeated in each convolution layer of
the proposed architecture, and with the same shown in Eq. (1). Then,
the final output is passed through batch normalization (∙) followed by
a non-linear activation function 𝜉(∙).

𝐈𝐅𝐌𝑘𝑛 = 𝜉

(



( 𝑚
∑

𝑟=1
𝐈𝐅𝐌𝑟

𝑛−1 ∗ 𝐂𝑘𝑟𝑛 + 𝑏𝑘𝑛
))

(1)

In our proposed network, we have used a Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010) as the activation function 𝜉(∙) stacked
with each convolution layer, where the negative values in the output of
the convolutional layers are replaced by zeros and the positive values
remain unchanged, which may be expressed as shown in Eq. (2):

𝜉
(

𝐈𝐅𝐌𝑘𝑛
)

= 𝑚𝑎𝑥
(

0, 𝐈𝐅𝐌𝑘𝑛
)

(2)

In our proposed network, stacks of CB𝑁 convolution layers are used
sequentially, where 𝑁 ∈ {1, 2, … 5}. Each of the 𝐶𝐵𝑁 layers has 𝐶𝑘
kernels, where 𝑘 ∈ {16, 32, 64, 32, 16} and the size of each kernel (𝐶𝑘)
is set to 3 × 3 respectively.

Batch Normalization Layer.
To mitigate the stability of the network and greatly quicken the

training process, batch normalization layers (∙) are used in our pro-
posed network after each convolution layer, and also after first and sec-
ond fully connected layers as illustrated in Fig. 3. This layer normalizes
8

the output feature maps of the convolutional layer
(

𝐈𝐅𝐌𝑘
𝑛
)

by subtract-
ing the mean

(

MU𝜓
)

of mini-batch 𝜓 where 𝜓 ∈ {1, 2, 3, … , 32}, and
dividing by the batch standard deviation SD2

𝜓 . The same is shown in
Eq. (3).


(

𝐈𝐅𝐌𝑘
𝑛
)

= 𝐈𝐅𝐌𝑘
𝑛 −MU𝜓

/

√

SD2
𝜓 + 𝜀 (3)

Here, 𝜀 = 𝑒−05 is a constant value used to avoid complex values.

Pooling Layer.
This layer independently performs a down sampling operation over

each activated feature map, there by reducing the dimensionality of the
feature map (i.e., the output of the activation layer), and decreasing the
number of subsequent learnable parameters. In our proposed network,
we have used the maximum pooling operation (Chen et al., 2017) after
the first, third and fifth convolution blocks (i.e., CB1, CB3, and CB5),
as shown in Fig. 3. Here, the maximum activation value from each
non-overlapping rectangular window

(

W𝑥 ×W𝑦
)

of the input feature
map (𝐈𝐅𝐌𝑘

𝑛) is kept by excluding all others, where
{

W𝑥,W𝑦
}

∈ 2.
Thus, the layer quickly converges the training accuracy by choosing
the discriminative and position invariant features.

Fully Connected Layer.
After manifold blocks of convolutional, activation and pooling lay-

ers, the final feature maps corresponding to each image sequence (I) are



S.D. Roy and M.K. Bhowmik Computer Vision and Image Understanding 222 (2022) 103498

f
s
w
w
a
l

𝐅

Fig. 3. Pipeline of our Proposed CNN Architecture (AWDMC-Net) for Classification of Atmospheric/Weather Conditions.
lattened and converted into a one-dimensional feature vector 𝐈𝐅𝐌𝑛−1 of
ize m and linked into the L number of fully connected layers (𝐅𝐂𝐿),
here 𝐿 = {1, 2}. Each L consists of 100 and 50 neurons respectively,
hich are densely connected, i.e., all the neurons of the previous layers
re interconnected with one another. The output of the fully connected
ayer is shown in Eq. (4).

𝐂𝑛𝐿 = 𝜉

(



( 𝑚
∑

𝑟=1
𝐈𝐅𝐌𝑟

𝑛−1 × 𝐂𝑘𝑟𝑛 + 𝑏𝑘𝑛
))

(4)

The output of each of these layers is batch normalized, (∙), and
activated, 𝜉(∙), as shown in Eqs. (2) and (3), respectively.

Dropout Layer.
This layer overcomes the overfitting problem of the model by

disabling the activity of certain neurons for performance improve-
ment (Srivastava et al., 2014). In our proposed architecture, we have
used two dropout layers, as shown in Fig. 3. The dropout layers are used
after the first and second fully connected layers, with a probability of
0.2.

Output Layer.
This layer is also a part of the fully connected layer (represented

as 𝐅𝐂3 in Fig. 3), which is densely connected to the preceding fully
connected layers and is liable for class label prediction. In our pro-
posed network, this layer consists of six neurons, as shown in Fig. 3,
each representing a particular class of atmospheric/weather conditions
(i.e., Clear Condition (Label 0), Dust Condition (Label 1), Foggy Condi-
tion (Label 2), Haze Condition (Label 3), Poor Illumination Condition
(Label 4), and Rain Condition (Label 5)). As the objective of the
proposed network is multiclass classification of atmospheric/weather
degraded outdoor scenes, we have used the softmax activation func-
tion (Gao and Pavel, 2017) in this layer where the output real values
from the last fully connected layer, are normalized to target class
probabilities. Let  (∙) be the mapping function of the entire process
from input to output. The softmax activated output function S (∙) then
be represented as shown in Eq. (5).

P𝐿 = S
(

𝐎𝐿 = 𝑐|
)

= 𝑒𝐿

/ Nc
∑

𝑐=1
𝑒𝑐 (5)

Here, 𝐎𝐿 is the actual class probability belonging to class c, which
signifies real values ranging from 0 to 1, and 𝑐 ∈

{

1, 2,… ,N𝑐
}

,
where N𝑐 = 6 represents the number of classes. Depending on the
highest probability score of the output layer (comprised of six neurons),
the proposed AWDMC-Net classifies 112 × 112 sized input images

into either of the six different atmospheric/weather classes (i.e., Clear

9

Condition, Dust Condition, Foggy Condition, Haze Condition, Poor
Illumination, and Rain Condition).

Skip Connections.
In deep networks, more complex, discriminating, and fine detailed

features are generally learned as the network grows because of which
the features learned by the network in the previous layers are not able
to sustained and may result in a decrease in the prediction performance
of the network. Therefore, utilizing the concept of skip connections
in the network, the subsequent layers can learn the features of the
preceding layers directly. According to Huang et al. (2017), there
are two types of skip connections, i.e., residual connectivity (addition
shortcut used in ResNet (Huang et al., 2017)), and dense connectiv-
ity (concatenation shortcut used in DenseNet (Huang et al., 2017)).
Usually, the selection of kernels and their corresponding sizes controls
the number of learnable parameters which further affects the network
performance. In Prateek Joshi (2021), it was reported that there is a
high risk for model overfitting if the number of learnable parameters is
greater than or equal to the number of considered samples for training
the model.

Depending upon this phenomenon, we have used addition based
skip connections in our proposed network, as shown in Fig. 3. The main
reason for using the addition based skip connections compared to the
concatenation based skip connections is that the numbers of feature
maps and parameters remain consistent throughout the network. Let
us consider ADB𝑛 as the output of the 𝑛th addition layer (as shown
in Fig. 3). This means that the output feature map of the 𝑛th addition
layer is a non-linear transformation 𝜉(∙) to the convoluted, followed by
a batch normalized feature map of the output of the (n-i)th layer plus
the output of the (n-1)th layer (i.e., a convoluted feature map of the
preceding layer). The same is shown in Eq. (6).

ADB𝑛 = 𝜉

(



( 𝑚
∑

𝑟=1
𝐈𝐅𝐌𝑟

𝑛−𝑖 ∗ 𝐂𝑛𝑘 + 𝑏
𝑛
𝑘

)

+ 𝐈𝐅𝐌𝑛−1

)

(6)

Here, i is the number of layers skipped from the addition layer.
The resultant feature map ADB𝑛 is then fed to the next layer. In our
proposed network (described in Section 4.1), there are five sequentially
stacked convolutional blocks (CBn), where each block considers a dif-
ferent number of convolutional kernels. This means that the preceding
and subsequent feature maps are not of the same size. Therefore, we
have used skip connections (SCB𝑁 ) in our proposed network, each
of which is passed by a 1 × 1 convolutional block and added to
the subsequent layer. Moreover using skip connection in the proposed
network, the local feature maps more relevant to the local semantic
information will be assigned a higher weight via this 1 × 1 convolu-

tion layer. In particular, we have investigated whether increasing the
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Table 5
Effect of skip connections on the learning accuracy.

Skip
connection

Input from the
output of

Connected to
the output of

Other associated skip
connections

Number of skip
connections

Training
accuracy

Validation
accuracy

EX/IN

No – – – – 92.97% 90.40% –
SCB1 Input CB1 – 1 92.08% 89.65% EX
SCB2 MP1 CB2 – 1 92.71% 89.89% EX
SCB3 MP1 CB3 – 1 95.35% 91.03% IN
SCB4 CB2 CB3,ADB1 SCB3 2 95.76% 92.45% IN
SCB5 MP2 CB4 SCB3, SCB4 3 95.84% 92.89% IN
𝐒𝐂𝐁𝟔 MP2 CB5 SCB3, SCB4, SCB5 4 97.45% 94.45% IN
SCB7 CB3 ADB4 SCB3, SCB4, SCB5, SCB6 5 94.34% 90.88% EX

E—Excluded from the Network; IN—Included in the Network; SCBN—Nth Skip Connection Block; CBN—Nth Convolutional Block; MPN—𝑛th
Max Pooling Block, ADBN—𝑛th Addition Layer.
number of skip connections (SCB𝑁 ) in the network can improve the
accuracy, and we have determined the number of skip connections that
have the highest learning accuracy. The effect of the skip connections
(SCB𝑁 ) on the learning accuracy of our proposed network is shown
in Table 5. The various associated hyper parameters of the network
training are consistent, as described in Section 4.3. Table 5 show that
a maximum accuracy of 94.45% is obtained with four skip connection
blocks (i.e., SCB3, SCB4, SCB5, and SCB6). These findings indicate that
the subsequent layer of our proposed network, i.e., AWDMC-Net, can
learn the features of the preceding layers, and that the accuracy is
also increased. Therefore, we have included these four skip connections
in our proposed network, thereby excluding the others as shown in
Fig. 3. These four skip connections are further epitomized as SCB1,
SCB2, SCB3, and SCB4, respectively in Fig. 3 for better visualization.
Each of the SCB𝑁 layers has Ck kernels, where 𝑘 ∈ {64, 64, 32, 16} and
the size of each kernel (𝐶k) is set to 1 × 1 respectively.

The description of each layer associated with our proposed AWDMC-
Net for the classification of atmospheric/weather degradation condi-
tions in outdoor scenes is summarized in Table 6.

4.3. Training of our proposed AWDMC-Net architecture

In this subsection, we discussed the loss function used to optimize
the proposed network, thereby tuning the learnable kernels. As our
main task is a multiclass problem, we have incorporated categorical
cross entropy (Rusiecki, 2019) as a loss function  (∙) to quantify the
loss of our proposed network, which indicates the error incurred in the
learnable parameters and is expressed in Eq. (7).


(

O𝐿,P𝐿
)

= −
𝑁𝑐
∑

𝑐=1
O𝐿𝑐 × log

(

P𝐿𝑐
)

(7)

Here, 𝑂𝐿𝑐 and 𝑃𝐿𝑐 represent the original probability (i.e., ground
truth label) and network predicted probability for the 𝑐th class, re-
spectively, and 𝑁𝑐 represents the total number of atmospheric/weather
classes considered in our study. The main motive is to update the learn-
able parameters in such a way that the loss function  (∙) is minimized.
Therefore, the gradient for the loss function regarding the mapping
function 𝛿((O𝐿 ,P𝐿))

𝛿𝑖
is used to update the learnable parameters in the

ext iteration. Here, i represents a correct class. The process will be it-
ratively repeated until the loss function is minimized to a certain small
alue. To continue the training process, the Adam optimizer (Kingma
nd Ba, 2014) was used in our proposed architecture. After successive
terations, it will provide probabilities or scores signifying that the
mage sequences belong to one of the six pre-defined classes, as shown
n Fig. 3. The image sequences under consideration will be allocated
ith the corresponding class label for which the predicted probability

core is a maximum, which is shown in Eq. (8).

(𝐈) = 𝑎𝑟𝑔𝑚𝑎𝑥
(

P𝐿𝑐
)

(8)

Here, the class label function ℑ (∙) predicts the label of each input
image sequence I, as per Eq. (8). Thus, after successive training the class
label of each of the test image sequences is predicted by the network
10
Table 6
Layer wise description of AWDMC-NET architecture for classification of atmo-
spheric/weather conditions.

Layer
type

Input Kernel
size

Filters/
Stride

Connected
to

No. of LPs
in each layer

INPUT 112 × 112 × 3 – – – 0
CONV1 112 × 112 × 3 3 × 3 16/1 INPUT 448
BN1 112 × 112 × 16 – – CONV1 64
RELU1 112 × 112 × 16 – – BN1 0
POOL1 112 × 112 × 16 2 × 2 –/2 RELU1 0
CONV2 56 × 56 × 16 3 × 3 32/1 POOL1 4640
BN2 56 × 56 × 32 – – CONV2 128
RELU2 56 × 56 × 32 – – BN2 0
CONV3 56 × 56 × 32 3 × 3 64/1 RELU2 18 496
BN3 56 × 56 × 64 – – CONV3 256
CONV6 56 × 56 × 32 1 × 1 64/1 POOL1 1088
BN6 56 × 56 × 64 – – CONV6 256
ADB1 56 × 56 × 64 – – BN3, BN6 0
RELU3 56 × 56 × 64 – – ADB1 0
CONV7 56 × 56 × 64 1 × 1 64/1 RELU2 2112
BN7 56 × 56 × 64 – – CONV7 256
ADB2 56 × 56 × 64 – – ADB1, BN7 0
RELU4 56 × 56 × 64 – – ADB2 0
POOL2 56 × 56 × 64 2 × 2 –/2 RELU4 0
CONV4 28 × 28 × 64 3 × 3 32/1 POOL2 18 464
BN4 28 × 28 × 32 – – CONV4 128
CONV8 28 × 28 × 64 1 × 1 32/1 POOL2 2080
BN8 28 × 28 × 32 – – CONV8 128
ADB3 28 × 28 × 32 – – BN4, BN8 0
RELU5 28 × 28 × 32 – – ADB3 0
CONV5 28 × 28 × 32 3 × 3 16/1 BN4 4624
BN5 28 × 28 × 16 – – CONV5 64
CONV9 28 × 28 × 64 1 × 1 16/1 POOL2 1040
BN9 56 × 56 × 16 – – CONV9 64
ADB4 28 × 28 × 32 – – BN5, BN9 0
RELU6 28 × 28 × 16 – – ADB4 0
POOL3 28 × 28 × 16 2 × 2 –/2 RELU6 0
FLAT1 14 × 14 × 16 – – POOL3 0
FC1 3136 × 1 – – FLAT1 313 700
BN12 100 × 1 – – FC1 400
RELU12 100 × 1 – – – 0
DO1 (20%) 0
FC2 100 × 1 – – DO1 5050
BN13 50 × 1 – – FC2 200
RELU13 50 × 1 – – BN13 0
DO2 (20%) 0
FC3 50 × 1 – – DO2 306
SOFTMAX ACTIVATION WITH SIX CLASSES (6 × 1)

Total number of learnable parameters: 3,73,992 Parameters

Convn—𝑛th Convolution Layer; RELUn: 𝑛th Activation Layer; Pooln: 𝑛th Pooling Layers,
FCn—𝑛th Fully Connected Layer; BNn—𝑛th Batch Normalization, ADBn—𝑛th Addition
Layer; DOn—𝑛th Dropout Layer; LPs: Learnable Parameters.

passed to it, depending on the discriminative features it had learned
during the training process.

Setting of the Training Parameters:
To train out the proposed network, 48 000 image sequences (as

shown in Table 3) are arbitrarily selected from E-TUVD and further
augmented, as described in Section 5.1, providing balanced coverage
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Fig. 4. (a) Training accuracy of our proposed AWDMC-Net with different optimizers; (b) Validation accuracy of our proposed AWDMC-Net with different optimizers; (c) Training
nd validation loss of our proposed AWDMC-Net using categorical cross entropy loss.
f representative atmospheric/weather degraded conditions of the real
orld (i.e., fog, haze, dust, rain, poor illumination, and clear days),
long with the corresponding atmospheric/weather class labels. Train-
ng images are arbitrarily shuffled before feeding the proposed network
or training. The training image sequences are split into a training
et and validation set at a 4:1 ratio along with their corresponding
lass labels. The learning rate and weight decay were set to 0.001 and
.0002 (experimentally), respectively. Moreover, random initialization
f weights was performed. We empirically compared the training and
alidation accuracy of our proposed model with three widely used
ptimizers, i.e., Adam (Kingma and Ba, 2014), RMSprop (root mean
quare propagation) (DataDrivenInvestor, 2021) and SGD (stochastic
radient descent) (Sutskever et al., 2013) (as shown in Fig. 4). It has
een observed from Fig. 4 that the maximum learning accuracy is
btained using the Adam optimizer (Kingma and Ba, 2014); therefore,
e have used Adam (Kingma and Ba, 2014) as an optimizer in our
roposed network. A total of 50 epochs with a batch size of 32 images
re used in our proposed work, such that the softmax loss is minimized
as described in Section 4.3).

The implementation of our proposed architecture is conducted us-
ng Python platform (Tensor-flow and Keras library) on an Nvidia
eForce GTX TITAN XP GPU based system with 64 GB installed mem-
ry (RAM). Fig. 4 represents the training/ validation loss obtained per
poch of our proposed model using the categorical cross entropy loss
unction (Rusiecki, 2019).

.4. Pruning of convolutional kernels

After training our proposed network (i.e., AWDMC-Net) until it con-
erges on the atmospheric/weather classification task, less important
onvolutional kernels (sometimes pronounced as filters) are pruned
nd further retrained to recover the prediction performance of the
etwork. One of the main advantages of filter level pruning is that
11
no alteration of the network structure is performed. In the literature,
there are several empirical criteria to evaluate the significance of each
convolutional kernel in the network and prune them accordingly (Luo
et al., 2018; Li et al., 2016; Hu et al., 2016). Each of these pruning
criteria essentially only considers the filter weights for calculating
the score of each filter, but does not take into account the influence
of the corresponding output feature maps in the network. Therefore,
the selection of relevant convolutional filters/kernels adaptively and
competently is still a difficult task. In our work, we proposed a new
pruning method to compute the score of each filter, called the ‘‘entropy
guided mean-l1 norm’’. Generally, entropy is a frequently used metric
in information theory to measure disorder or uncertainty. The higher
the entropy value, the more information the system has. Depending
upon this phenomenon, the feature maps with more discriminative
information will have higher entropy values as compared to the feature
maps with less discriminative information. Thus, on the basis of this ob-
servation, our proposed pruning criteria evaluates the filter importance
globally by comprehensively considering filters and the entropy values
of their corresponding output feature maps. Let 𝑤𝑖𝑗 be the weight of the
ith filter at the nth layer and 𝐈𝐅𝐌𝑖

𝑛+1 be the corresponding input feature
map to the (n+1)th layer obtained from ith filter. Then the entropy
guided mean-l1 norm based pruning criterion (our proposed pruning
method) are expressed in Eq. (9).

𝑛𝑖 =
1
𝑁

𝑁
∑

𝑗=1

‖

‖

‖

𝑤𝑖𝑗
‖

‖

‖1
× Entropy(𝐈𝐅𝐌𝑖

𝑛+1) (9)

Here, 𝑁 represents the number of input channels at the nth layer.
Depending on this scoring criterion, the proposed network adaptively
eliminates all the irrelevant or less important convolution kernels ac-
cording to their individual scores, as computed in Eq. (9) (i.e., filters
with the smallest values of 𝑆 are discarded from the network). In
𝑛𝑖
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Table 7
Overall performance of our pruning criteria to reduce parameters and increase prediction performance on our proposed AWDMC-Net
atmospheric/weather classification network.

Pruning method Parameters Prediction performance

Original (L) Pruned (L) Percentage Accuracy (%) Specificity (%) Sensitivity (%)

Mean-l1 (Li et al., 2016)
3.74

3.66 2% 93.01 ± 1.21 93.03 ± 1.59 93.92 ± 1.93
Mean-l2 (Li et al., 2016) 3.68 2% 92.36 ± 1.34 91.21 ± 2.11 93.42 ± 1.45
APoZ (Hu et al., 2016) 3.61 4% 92.96 ± 1.67 92.21 ± 1.45 93.18 ± 2.13
Proposed pruning method 3.55 5% 93.85 ± 1.65 93.79 ± 2.33 94.18 ± 1.89

Bold Face—Most Outer Performed Classified Conditions; L—Lakhs.
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our filter pruning scenario, if the current filter is less important for
output feature map generation, 𝑆𝑛𝑖 will approach towards 0. The pre-
iction results are almost unaffected by removing this filter. A higher
𝑛𝑖 value, on the other hand, indicates that the present dimension is
ore essential. During pruning processes, the number of convolution

ernels discarded/eliminated is different for each convolution layer.
owever, due to the presence of the shortcut connections in the pro-
osed network, the pruning of convolutional filters/kernels from each
ayer in the network is quite complicated. This is because the channel
umbers of skip connection blocks (SCBn) and the corresponding output
f convolution blocks (CBn) after pruning in a stage (i.e., addition
ayer) need to be consistent to make the sum operations valid. Due
o the structural constraints, after eliminating  percentage of filters
rom the proposed network of those having lowest scores, the number
f channels/filters in the two subsequent layers to be added in the
ddition layer are matched for the dimension. If the dimension does
ot match (i.e., the two subsequent layers to be added do not have the
ame number of feature maps), then the dimensions of the two layers
re matched by eliminating the number of filters that have the lowest
cores, as per Eq. (9), from the layer that has more filters than the other
ayer to be added in the corresponding addition layer. The advantages
f our pruning process are self-evident. First, it is a global criteria that
an assess the influence of all filters at the same time. Second, there is
o direct relationship between importance score and filter placement,
.e., the number of filters that should be deleted is totally dependent on
he scores.

Finally, all filter scores will be sorted in ascending order across all
evels. The top ‘T ’ percentage of filters will be eliminated, resulting
n a compact model that has been trimmed. In practice, the value of
T ’ is determined by the computational or storage budget available.
or the proposed network, the influence of the number of pruned
onvolution kernels (i.e., in percentage) based on our proposed pruning
riteria has been studied on the image sequences of our created E-
UVD dataset, as described in Table 3. The impact of the percentage
f pruned convolution kernels on the proposed network is displayed
n Fig. 5. Here, the 𝑋-axis indicates the percentage of filters pruned
rom the proposed network, and the 𝑌 -axis indicates the accuracy.

The training accuracy and validation accuracy were considered for a
total of 50 epochs, and the various associated hyper parameters of the
network training remained the same as those described in Section 4.3.
Fig. 5 shows that the percentage of filters pruned from the proposed
network has a strong influence on the accuracy. Careful inspection of
Fig. 5 can lead to the following observation: as the pruning percentage
increases, the relevant filters are eliminated from the network, thereby
decreasing the prediction performance of the network. Therefore, only
the suitable selection of a pruning percentage can apprehend the bal-
ance between the minimum computational resource and maximum
prediction performance. Additionally, from Fig. 5 it can be observed
that the proposed network achieves a maximum performance with a
5% pruning percentage of convolution kernels/filters.

Moreover, in order to establish the effectiveness of our proposed
pruning criterion (i.e., entropy guided mean-l1 norm based pruning
criterion as shown in Eq. (9)), a comparison with respect to the well-
known state-of-the-art pruning criteria i.e., mean-l1 (Li et al., 2016),

ean-l2 (Li et al., 2016), and APoZ (Average Percentage of Zeros) (Hu
t al., 2016), has been studied. Except for APoZ, the remaining two
 t

12
Fig. 5. Effect of pruning of convolutional kernels in learning accuracy using our
proposed pruning criterion (Entropy Guided Mean-l1 Norm).

Fig. 6. Effect of using the Proposed Pruning Criterion (i.e., Entropy Guided Mean-l1
Norm) as compared to Mean-l1 (Li et al., 2016); Mean-l2 (Li et al., 2016); and APoZ
ased pruning criteria (Hu et al., 2016).

tate-of-the-art pruning criteria consider filters with higher scores to
e more relevant. In Table 7, comparison of our pruning criteria with
espect to the network parameters and prediction performance has been
eported. The prediction performance was measured in terms of the
ccuracy, specificity, and sensitivity. These measurement units were
btained from the confusion matrix, which includes: True Positives
TP), True Negatives (TN), False Positives (FP), and False Negatives
FN). From Fig. 6 representing the bar plot of the prediction per-
ormance (i.e., testing performance on the testing set of the E-TUVD
ataset as provided in Table 3) of the proposed pruning criterion

‘entropy guided mean-l1 norm’’ compared to the three state-of-the-art
runing criteria, it can be observed that the proposed pruning criteria
as a superior prediction performance compared to the state-of-the-art
runing criteria with an average accuracy, specificity, and sensitivity of
3.85%, 93.79%, and 94.18% respectively. Even though the prediction
erformance of our proposed pruning method have achieved 0.84%
mprovement in average accuracy as compared to mean-l1 pruning
ethod (Li et al., 2016) but the network learnable parameters of our
roposed AWDMC-Net model thereafter pruning using our proposed
runing method (so as compared to the state-of-the-art pruning meth-
ds) is also less (i.e., 3.55 lakhs learnable parameters) thereby reducing
he expensive memory utilization and computation costs.
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Table 8
Parameter values for data augmentation.

Augmentation parameters Parameter values

Rotation range 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦

Horizontal flipping True
Vertical flipping True
Rescale 1/255
Zoom range 0.3
Shift range of width 0.3
Shift range of height 0.3

5. Experimental results and discussions

In this section, the performance of our proposed network (AWDMC-
Net) for the classification of atmospheric/weather degraded image
sequences is discussed. Specific illustrations of the experimental results
are as follows.

5.1. Data augmentation

The main motive of applying data augmentation before feeding to
the CNNs is to increase the size of the dataset (i.e., in volume and
variety) and to generalize the CNN models with respect to the dataset
while preventing the classification accuracy in terms of overfitting.
The increase in the training and validation set of the dataset has
been performed through different techniques of image processing in
order to create new image sequences. These techniques are: flipping,
rotation, rescaling, zooming, and shifting. The various parameter values
associated with the augmentation techniques adopted in our study are
tabulated in Table 8. With these augmentation techniques, we increased
the volume of the training dataset (i.e., containing training and valida-
tion sets) from 48 000 to 624 000 atmospheric/weather degraded image
sequences.

5.2. Influence of pruned kernels on the classification accuracy

In this subsection, we report on and discuss the performance of the
proposed network before pruning (i.e., AWDMC-NetWOKP) and after
runing (i.e., AWDMC-NetWKP) of convolutional kernels/filters using
ur proposed pruning criterion as described in Section 4.4. Table 9
hows the prediction performance of the proposed network using the
verage accuracy, specificity, and sensitivity. The standard descriptor
i.e., mean ± standard deviation) for each considered assessment metric
as used to understand the prediction performance of our proposed
odel. To assess the performance of our proposed model, we tested
testing set of image sequences from E-TUVD (i.e., 12 000 image

equences as described in Table 3) that are not used for training
ur network. As in Table 9, it can be observed that the proposed
etwork after pruning the convolutional kernels (i.e., 5% of filters
re pruned based on our proposed pruning method as described in
ection 4.4) achieves a classification performance with an average
ccuracy, specificity, and sensitivity of 93.85%, 93.79%, and 94.18%,
espectively. Moreover, pruning the convolutional kernels from the
roposed network significantly increases the atmospheric/weather clas-
ification performance with an average percentage-point improvement
ccuracy of 0.80% compared to the proposed network without pruning
onvolution kernels/filters. Therefore, for a comparison of the proposed
etwork with the state-of-the-art methods, we have reported the exper-
mental results of the proposed network with adaptive pruning, which
as been pronounced as AWDMC-Net in later subsections.

.3. Qualitative evaluation of the proposed AWDMC-Net model in atmo-
pheric/weather conditions of E-TUVD

In this subsection, the performance of our proposed AWDMC-Net

odel for the classification of each individual atmospheric/weather

13
condition on our E-TUVD dataset is reported. The prediction perfor-
mance is tabulated in Table 10 in terms of three assessment metrics:
accuracy, specificity, and sensitivity. Similar to the previous subsection,
the perception capability of our proposed AWDMC-Net model has
been evaluated on the testing set of E-TUVD, containing 2000 image
sequences in each class of atmospheric/weather conditions (as shown
in Table 3). As displayed in Table 10, the accuracies of our proposed
AWDMC-Net model for the prediction of outdoor scenes degraded by
fog, haze, dust, rain, poor illumination, and clear day conditions were
96.01%, 93.70%, 91.62%, 92.35%, 94.36%, and 95.08%, respectively.
Additionally, it can be observed that the AWDMC-Net model has a
superior prediction performance for fog conditions compared to the
other five atmospheric/weather conditions, with an average specificity
and sensitivity of 96.25% and 95.81%, respectively.

5.4. Comparison of the proposed AWDMC-Net model with state-of-the-art
pre-trained CNN models

In this subsection, we compared our proposed model (AWDMC-
Net) with the pre-trained CNN models applied to the ImageNet Chal-
lenge Dataset (Deng et al., 2009) for the classification of outdoor
scenes of the E-TUVD dataset degraded by atmospheric/weather con-
ditions. Currently, many pre-trained models of CNN applied on the
ImageNet Challenge Dataset (Deng et al., 2009) are available for the
research community, along with their learned kernels and weights.
There are three procedures to use these pre-trained networks: fixed
feature extraction, transfer learning and fine-tuning. From the liter-
ature, fifteen well-known and widely used pre-trained CNN models
are used in our study: VGG-16 (Russakovsky et al., 2015), VGG-
19 (Russakovsky et al., 2015), AlexNet (Krizhevsky et al., 2012),
Inception-V3 (Szegedy et al., 2016), GoogleNet (Szegedy et al., 2015),
Resnet-101 (He et al., 2016), Resnet-50 (Huang et al., 2017), Resnet-
18 (Huang et al., 2017), Densenet-201 (Huang et al., 2017), Xcep-
tion (Chollet, 2017), MobileNet-V2 (Sandler et al., 2018), Inception-
Resnet-V2 (Szegedy et al., 2017), EfficientNet-B0 (Tan and Le, 2019),
Darknet-19 (Redmon, 2020), and Darknet-53 (Redmon, 2020). To eval-
uate and compare the prediction performance of our proposed model
(AWDMC-Net) with these state-of-the-art pre-trained models, we used
these aforementioned pre-trained CNNs as a fixed feature extraction
module and fine tuning module.

Pre-Trained CNNs as a Fixed Feature Extraction Module. In our
present work, a fixed feature extraction method is adopted by eliminat-
ing the fully connected layers from the CNNs that are pre-trained on the
ImageNet dataset (Deng et al., 2009) while maintaining the remaining
network. After feature extraction using these pre-trained networks, a
support vector machine (SVM) classifier (Cristianini and Shawe-Taylor,
2000) with four different kernels (i.e., Linear, Radial Basis Function
(RBF), Polynomial, and Gaussian) and k-fold cross validation were
appended on the fixed feature extractor, resulting in the classification of
atmospheric/weather degraded scenes on E-TUVD dataset. To evaluate
the performance of CNNs as a feature extractor, 12 000 similar frames
of E-TUVD used for testing our proposed CNN models were used.
The performance of the pre-trained CNNs and a comparison of our
proposed model (i.e., AWDMC-Net) against the four kernels of the
SVM are illustrated in Table 11. The prediction performance has been
reported in terms of its accuracy, sensitivity, and specificity. Similar to
Section 5.2, the standard descriptor (i.e., mean ± standard deviation)
for each assessment metric was used to measure the prediction per-
formance. The two best performing CNN models for the classification
of atmospheric/weather degraded frames against each of the classifiers
are represented by bold underlined faces and bold faces in Table 11,
respectively. From Table 11, the following observations can be made:

1. Different CNN based feature sets have shown a superior pre-
diction performance for different kernels of SVM. Among all
four kernels of the SVM classifiers, SVM_Polynomial showed
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Table 9
Recognition accuracy of our proposed AWDMC-Net model with and without adaptive pruning.

AWDMC-Net with Recognition accuracy (Mean ± SD)

different combinations Accuracy (%) (↑) Specificity (%) (↑) Sensitivity (%) (↑)

AWDMC-NetWKP 93.85 ± 1.65 93.79 ± 2.33 94.18 ± 1.89
AWDMC-NetWOKP 93.05 ± 2.21 91.87 ± 2.32 94.12 ± 1.05

AWDMC-NetWKP—AWDMC-NET with Kernel Pruning; AWDMC-NetWKP—AWDMC-Net without Kernel
Pruning; SD—Standard Deviation; ↑—Higher Value Indicates Better Performance.
Table 10
Recognition accuracy of our proposed AWDMC-Net model in different atmo-
spheric/weather degraded conditions of E-TUVD.

Atmospheric/Weather conditions Recognition accuracy

Accuracy (↑) Specificity (↑) Sensitivity (↑)

Fog Condition 96.01% 96.25% 95.81%
Haze Condition 93.70% 95.03% 94.87%
Dust Condition 91.62% 91.14% 90.94%
Rain Condition 92.35% 93.05% 92.92%
Poor Illumination Condition 94.36% 91.20% 94.83%
Clear Day Condition 95.08% 96.12% 95.66%

Bold Face and Underlined—Most Outer Performed Classified Conditions; Bold
Face—Second Most Outer Performed Classified Conditions.

a better prediction performance for all the extracted feature
sets using pre-trained CNNs and our proposed model with an
average accuracy, specificity, and sensitivity of 79.62%, 80.79,
and 79.61%, respectively. Conversely, SVM_Gaussian showed a
lower prediction performance for all the extracted feature sets
using CNNs with an average accuracy, specificity, and sensitivity
of 74.06%, 73.54, and 75.29%, respectively.

2. Comparing the prediction performance of all the CNN models as
a fixed feature extraction module (as shown in Table 11), our
proposed CNN model showed a superior prediction performance
for all the kernels of the SVM classifier. For SVM_Linear, the av-
erage accuracy, specificity and sensitivity were 89.56%, 89.64%,
and 92.70%, respectively; for SVM_Polynomial, the average ac-
curacy, specificity and sensitivity were 91.40%, 92.33%, and
94.76%, respectively; for SVM_RBF, the average accuracy, speci-
ficity and sensitivity were 90.44%, 87.60%, and 94.02%, respec-
tively; and for SVM_Gaussian, the average accuracy, specificity
and sensitivity were 88.45%, 86.79%, and 91.02%, respectively.

Pre-Trained CNNs as a Fine-Tuning Module. On the other hand,
NN with a fine-tuning module is an effective strategy to train the
etwork using given data of interest. In our comparative analysis, we
ave also fine-tuned the aforementioned pre-trained CNN networks
here the last fully connected layer in each of the considered pre-

rained networks is replaced by six neurons. Each of the neurons for
articular pre-trained CNNs in the last fully connected layer epitomizes
ix classes of atmospheric/weather conditions of the E-TUVD dataset.
ere, we first trained the base networks on a base dataset (i.e., Im-
geNet challenge dataset Deng et al., 2009) and then the generic
eatures learned from this large dataset (i.e., pre-defined weights) are
ransferred to the target network (i.e., maintaining the entire network)
o be trained on our E-TUVD dataset. For a fair comparison, fine-tuned
NNs are trained on similar augmented training and validation sets of
-TUVD (as described in Section 5.1) that are used for training our
roposed network. Meanwhile, to evaluate and compare the prediction
erformance of pre-trained CNNs as a fine-tuning module and our
roposed network, we used a similar test set of 12 000 image sequences
rom the E-TUVD dataset used for testing our proposed model. The
raining and validation accuracy for each fine-tuned pre-trained CNN
odel and our proposed model are shown in Table 12. In addition, the

esting performance of the respective models in terms of their accuracy,
pecificity, and sensitivity are shown. Similar to the previous subsec-
ion, the two best performing CNN models are represented by bold
nderlined and bold faces. Table 12 leads to the following observations:
14
Fig. 7. ROC curves for comparison of fine-tuned pre-trained CNN Models and our
proposed CNN model (AWDMC-Net) for atmospheric/weather classification task on
E-TUVD dataset.

1. In comparing the prediction performance of each fine-tuned pre-
trained CNN model, VGG-19 (Russakovsky et al., 2015) showed
the best prediction performance with an average accuracy, speci-
ficity, and sensitivity of 90.16%, 93.18%, and 90.13%, respec-
tively. Moreover, in comparison with the testing performance
of all the fine-tuned CNN models (i.e., for the best performing
epoch), our proposed AWDMC-Net model gives the highest clas-
sification performance with an average accuracy, specificity, and
sensitivity of 93.85%, 93.79%, and 94.18%, respectively.

2. In addition to the classification performance, the analysis of
ROC (Receiver Operating Characteristic) curves for all the pre-
trained CNN models and our proposed CNN model for classifying
atmospheric/weather conditions of the E-TUVD dataset is also
plotted in Fig. 7. Here, AUC (Area Under the Curve) is also
considered as the measure of the classification performance for
the considered CNN models. As illustrated in Fig. 7, among all
the CNN models, AWDMC-Net (i.e., our proposed CNN model)
has the highest AUC value of 0.93, which indicates the supe-
riority of its prediction performance over the pre-trained CNN
models in classifying the six categories of atmospheric/weather
conditions in the E-TUVD dataset (i.e., fog, haze, dust, rain, poor
illumination, and clear day conditions).

5.5. Comparison of the proposed AWDMC-Net model with the state-of-the-
art methods on available benchmark datasets and E-TUVD dataset

To verify the robustness of the proposed model, in this subsection
we compared its prediction performance with the state-of-the-art meth-
ods reported in the literature for atmospheric/weather classification
tasks. For fair comparison, the prediction performance of the proposed
AWDMC-Net has been evaluated on the available benchmark datasets
used by most researchers for similar tasks. The benchmark datasets
used in our present work are the RFS dataset (Guerra et al., 2018),
MWI dataset (Zhang and Ma, 2015), REalistic Single Image DEhaz-
ing (RESIDE) dataset (Li et al., 2018), MWD dataset (Guerra et al.,
2018), Image2Weather dataset (Chu et al., 2016), and WeatherDataset-
4 (Zhao et al., 2019). The detailed key characteristics associated with

each of these benchmark datasets are provided in Section 2.2. The
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Table 11
Accuracy, Specificity and Sensitivity of pre-trained CNNs and our AWDMC-Net model as a feature extraction on E-TUVD.

CNN architecture(s) SVM-Linear (Mean ± SD) SVM-Polynomial (Mean ± SD)

Accuracy (%) Specificity (%) Sensitivity (%) Accuracy (%) Specificity (%) Sensitivity (%)

VGG-16 Russakovsky et al. (2015) 84.78 ± 3.12 88.41 ± 2.03 81.84 ± 3.04 84.93 ± 2.86 85.33 ± 2.10 82.02 ± 1.11
VGG-19 Russakovsky et al. (2015) 85.70 ± 2.50 81.34 ± 1.89 86.46 ± 1.65 88.42 ± 2.01 89.45 ± 1.82 88.05 ± 1.09
AlexNet Krizhevsky et al. (2012) 76.86 ± 1.54 80.34 ± 0.96 75.00 ± 3.47 78.01 ± 1.19 83.34 ± 1.06 77.20 ± 0.98
Inception-V3 Szegedy et al. (2016) 65.54 ± 1.05 65.92 ± 3.01 64.81 ± 2.13 71.30 ± 3.20 74.97 ± 2.53 70.83 ± 2.40
GoogleNet Szegedy et al. (2015) 76.85 ± 2.33 73.57 ± 1.84 74.33 ± 1.42 76.88 ± 2.02 79.68 ± 2.14 74.60 ± 1.56
Resnet-101 He et al. (2016) 74.16 ± 2.84 71.82 ± 3.11 78.32 ± 2.53 76.74 ± 1.18 74.07 ± 1.25 78.72 ± 1.05
Resnet-50 Nair and Hinton (2010) 70.82 ± 1.33 71.15 ± 1.87 68.97 ± 1.61 73.67 ± 1.32 73.40 ± 1.10 72.98 ± 1.21
Resnet-18 Nair and Hinton (2010) 71.54 ± 0.96 73.18 ± 1.02 70.83 ± 1.31 73.69 ± 1.05 75.82 ± 0.87 72.99 ± 1.19
Densenet-201 Nair and Hinton (2010) 76.17 ± 2.13 74.21 ± 2.01 76.52 ± 1.55 76.88 ± 1.34 76.03 ± 1.14 78.33 ± 1.32
Xception Chollet (2017) 70.01 ± 1.20 67.34 ± 1.54 71.95 ± 1.12 73.31 ± 1.21 71.54 ± 1.06 75.72 ± 1.14
Mobilenet-V2 Sandler et al. (2018) 81.71 ± 1.42 80.67 ± 1.32 84.86 ± 1.10 84.24 ± 2.23 85.91 ± 1.67 84.96 ± 1.89
Inception-Resnet-V2 Szegedy et al. (2017) 69.56 ± 2.06 69.56 ± 2.21 71.95 ± 1.45 72.05 ± 2.08 71.00 ± 2.10 72.95 ± 2.18
EfficientNet-B0 Tan and Le (2019) 83.30 ± 0.98 86.72 ± 1.05 80.07 ± 1.11 84.54 ± 1.11 88.93 ± 1.41 84.00 ± 1.23
Darknet-19 Redmon (2020) 82.05 ± 1.16 85.69 ± 1.35 79.53 ± 0.83 83.31 ± 3.01 86.87 ± 2.56 80.56 ± 2.01
Darknet-53 Redmon (2020) 81.33 ± 0.66 83.80 ± 0.74 79.50 ± 1.37 84.50 ± 1.44 84.00 ± 2.01 85.05 ± 1.32
AWDMC-Net [Our] 89.56 ± 1.36 89.64 ± 2.05 92.70 ± 2.21 91.40 ± 0.86 92.33 ± 1.08 94.76 ± 1.34

CNN architecture(s) SVM-RBF (Mean ± SD) SVM-Gaussian (Mean ± SD)

Accuracy (%) Specificity (%) Sensitivity (%) Accuracy (%) Specificity (%) Sensitivity (%)

VGG-16 Russakovsky et al. (2015) 82.90 ± 1.10 84.33 ± 0.87 81.01 ± 1.06 78.84 ± 1.30 79.27 ± 1.22 78.85 ± 1.54
VGG-19 Russakovsky et al. (2015) 86.44 ± 0.94 87.21 ± 1.06 86.20 ± 1.12 82.95 ± 1.64 81.28 ± 2.18 83.36 ± 1.19
AlexNet Krizhevsky et al. (2012) 76.90 ± 1.44 78.46 ± 1.54 73.52 ± 1.19 74.21 ± 2.12 71.27 ± 1.32 75.77 ± 1.13
Inception-V3 Szegedy et al. (2016) 68.03 ± 1.23 66.63 ± 1.63 69.98 ± 1.30 68.01 ± 0.89 70.03 ± 1.20 67.38 ± 1.08
GoogleNet Szegedy et al. (2015) 75.43 ± 2.16 75.92 ± 1.29 73.81 ± 1.18 71.67 ± 1.11 70.42 ± 1.12 73.48 ± 1.33
Resnet-101 He et al. (2016) 73.12 ± 0.39 70.58 ± 1.17 75.15 ± 1.02 70.44 ± 1.34 69.38 ± 2.04 73.35 ± 1.19
Resnet-50 Nair and Hinton (2010) 72.40 ± 0.96 71.66 ± 1.88 72.30 ± 2.22 70.07 ± 2.56 69.40 ± 1.45 72.85 ± 1.16
Resnet-18 Nair and Hinton (2010) 71.06 ± 0.82 74.00 ± 1.34 69.85 ± 2.28 69.97 ± 1.38 71.71 ± 1.86 70.00 ± 2.01
Densenet-201 Nair and Hinton (2010) 74.83 ± 1.33 72.71 ± 2.31 76.49 ± 1.05 70.02 ± 0.93 73.65 ± 1.35 68.36 ± 1.22
Xception Chollet (2017) 71.22 ± 1.10 67.57 ± 1.54 73.98 ± 1.26 69.78 ± 2.27 69.53 ± 2.45 71.74 ± 2.50
MobileNet-V2 Sandler et al. (2018) 82.33 ± 1.24 83.59 ± 0.82 80.45 ± 1.11 73.33 ± 2.05 74.84 ± 1.11 70.96 ± 2.37
Inception-Resnet-V2 Szegedy et al. (2017) 70.08 ± 2.10 68.09 ± 1.32 72.18 ± 2.21 68.59 ± 1.51 67.86 ± 1.06 71.20 ± 1.43
EfficientNet-B0 Tan and Le (2019) 83.52 ± 2.15 84.73 ± 1.65 81.26 ± 1.19 75.32 ± 1.39 77.92 ± 1.28 71.70 ± 1.07
Darknet-19 Redmon (2020) 83.05 ± 1.32 87.94 ± 1.03 80.00 ± 0.91 78.02 ± 1.22 75.01 ± 1.04 79.95 ± 1.14
Darknet-53 Redmon (2020) 81.79 ± 1.21 84.06 ± 1.10 79.95 ± 1.23 75.31 ± 0.89 68.26 ± 2.34 84.65 ± 1.05
AWDMC-Net [Our] 90.44 ± 1.10 87.60 ± 0.97 94.02 ± 1.35 88.45 ± 1.03 86.79 ± 0.96 91.02 ± 1.13

Bold Face and Underlined—Most Outer Performed among Pre-Trained CNNs (state-of-the-art CNNs); Bold Face—Second Most Outer Performed Method among Pre-Trained CNNs
(state-of-the-art models); SD—Standard Deviation.
Table 12
Performance comparison of our proposed AWDMC-Net and state-of-the-art pre-trained CNN models as a fine tuning module on E-TUVD.

CNN architecture(s) Performance of pre-trained CNN as fine tuning module and our AWDMC-Net

Training accuracy Validation accuracy Testing performance (Mean ± SD)

Accuracy (%) Specificity (%) Sensitivity (%)

VGG-16 Russakovsky et al. (2015) 95.45% 89.54% 85.85 ± 1.64 89.16 ± 1.10 87.22 ± 1.32
VGG-19 Russakovsky et al. (2015) 95.83% 90.23% 90.16 ± 1.35 93.18 ± 0.98 90.13 ± 1.16
AlexNet Krizhevsky et al. (2012) 93.64% 86.94% 81.47 ± 1.10 78.45 ± 1.35 79.93 ± 1.29
Inception-V3 Szegedy et al. (2016) 93.27% 78.96% 78.30 ± 1.28 76.73 ± 1.22 81.65 ± 1.31
GoogleNet Szegedy et al. (2015) 94.67% 81.55% 80.76 ± 0.97 79.45 ± 2.34 83.26 ± 1.34
Resnet-101 He et al. (2016) 95.96% 78.54% 77.57 ± 0.75 80.21 ± 1.16 77.38 ± 0.98
Resnet-50 Huang et al. (2017) 94.80% 78.56% 76.82 ± 1.12 76.44 ± 1.05 75.88 ± 1.32
Resnet-18 Huang et al. (2017) 94.96% 78.04% 77.51 ± 1.23 79.12 ± 1.31 76.74 ± 1.06
Densenet-201 Huang et al. (2017) 95.64% 81.34% 80.97 ± 1.18 82.58 ± 1.70 79.16 ± 1.20
Xception Chollet (2017) 94.77% 88.91% 87.85 ± 1.26 89.16 ± 0.97 87.22 ± 0.92
MobileNet-V2 Sandler et al. (2018) 94.46% 86.57% 84.66 ± 1.20 85.74 ± 1.36 83.53 ± 1.34
Inception-Resnet-V2 Szegedy et al. (2017) 93.21% 91.80% 85.42 ± 1.34 89.16 ± 1.05 85.05 ± 1.42
EfficientNet-B0 Tan and Le (2019) 95.55% 86.67% 79.04 ± 2.16 82.48 ± 1.15 79.96 ± 1.31
Darknet-19 Redmon (2020) 95.34% 88.34% 78.45 ± 3.21 81.65 ± 1.08 78.04 ± 1.03
Darknet-53 Redmon (2020) 93.98% 86.69% 81.56 ± 1.73 79.87 ± 1.00 83.32 ± 1.11
AWDMC-Net [Our] 98.16% 95.40% 93.85 ± 1.65 93.79 ± 2.33 94.18 ± 1.89

Bold Face and Underlined—Most Outer Performed among CNN Method; Bold Face—Second Most Outer Performed CNN Method.
prediction performance of the proposed AWDMC-Net model for the
classification of atmospheric/weather conditions on these available
benchmark datasets is tabulated in Table 13 in terms of the average
accuracy. Additionally, the state-of-the-art methods and the obtained
accuracies on these similar datasets used for each research article are
reported in Table 13. The proposed AWDMC-Net model can predict the
classes of atmospheric/weather conditions with an average accuracy
of 91.73% on the RFS dataset (Guerra et al., 2018), 92.72% on the
MWI dataset (Zhang and Ma, 2015), 90.20% on the RESIDE dataset (Li
15
et al., 2018), 88.31% on the MWD dataset (Guerra et al., 2018),
89.36% on the Image2Weather dataset (Chu et al., 2016), and 91.04%
on the WeatherDataset-4 dataset (Xia et al., 2020). Moreover, it can
also be observed from Table 13 that the prediction performance of
the proposed model (i.e., AWDMC-Net) was higher than that of the
methods proposed by Zhang and Ma (2015), Zhang et al. (2016b),
Chu et al. (2017), Guerra et al. (2018), and Xia et al. (2020) for all
the considered datasets, except for the method proposed by Lin et al.
(2017) on the MWD dataset with an average accuracy of 94.10%.
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Table 13
Comparison of our proposed AWDMC-Net model with state-of-the-art weather image classification algorithms on available datasets.

Method, Year Average accuracy

RFS (Guerra et al.,
2018)

MWI (Zhang and
Ma, 2015)

RESIDE (Li et al.,
2018)

MWD (Lin et al.,
2017)

Image2Weather
(Chu et al., 2016)

WeatherDataset-4
(Xia et al., 2020)

Z. Zhang et al. 2015 Zhang and Ma (2015) – 59.44% – – – –
Z. Zhang et al. 2016 Zhang et al. (2016b) – 71.39% – – – –
W.T. Chu et al. 2017 Chu et al. (2017) – – – – 80.00% –
D. Lin et al. 2017 Lin et al. (2017) – – – 94.10% – –
J.C.V. Guerra et al. 2018 Guerra et al. (2018) 80.70% – – – – –
J. Xia et al. 2020 Xia et al. (2020) – – – – – 88.30%
AWDMC-Net [Our] 91.73% 92.72% 90.20% 91.31% 89.36% 91.04%

Bold Face—Most Outer Performed Method.
Table 14
Comparison of our proposed AWDMC-Net model with state-of-the-art weather image classification algorithms on E-TUVD dataset.

State-of-the-art methods Performance measures

Accuracy (%) Specificity (%) Sensitivity (%)

M. Elhoseiny et al. 2015 Elhoseiny et al. (2015) 81.47 ± 1.10 78.45 ± 1.35 79.93 ± 1.29
C. Lu et al. 2016 Lu et al. (2014) 88.77 ± 0.98 89.13 ± 1.06 86.06 ± 1.13
X. Li et al. 2017 Li et al. (2017) 83.82 ± 1.33 80.39 ± 1.72 86.32 ± 1.56
J.C.V. Guerra et al. 2018 Guerra et al. (2018) 89.11 ± 2.14 91.03 ± 1.04 87.01 ± 1.88
M.R. Ibrahim et al. 2019 Ibrahim et al. (2019) 80.15 ± 1.02 76.97 ± 1.87 85.13 ± 1.04
B. Zhao et al. 2019 Zhao et al. (2019) 81.37 ± 2.11 77.83 ± 2.26 85.56 ± 1.64
Q.A. Al-Haija et al. 2020 Al-Haija et al. (2020) 89.52 ± 1.31 91.06 ± 1.76 87.64 ± 2.04
AWDMC-Net [Our] 93.85 ± 1.65 93.79 ± 2.33 94.18 ± 1.89

Bold Face and Underline—Most Outer Performed Method; Bold Face—Second Most Outer Performed Method.
Table 15
Performance (Training, Validation, and Testing performance) of our proposed AWDMC-Net model with atmospheric/weather image classification benchmark datasets.

Benchmark datasets Training performance Performance measures

Training accuracy Validation accuracy Accuracy (%) Specificity (%) Sensitivity (%)

MWI Zhang and Ma (2015) 95.86% 93.89% 92.75 ± 1.16 88.98 ± 1.17 93.54 ± 2.02
RESIDE Li et al. (2018) 94.20% 91.06% 90.89 ± 2.32 89.53 ± 2.56 91.11 ± 1.12
MWD Lin et al. (2017) 96.43% 93.95% 92.79 ± 2.04 90.34 ± 1.04 94.86 ± 2.21
WeatherDataset-4 Xia et al. (2020) 96.95% 94.12% 91.66 ± 1.05 90.05 ± 2.09 93.45 ± 1.02
Moreover, comparison of the proposed AWDMC-Net model with the
tate-of-the-art deep learning based atmospheric/weather classification
ethods has been performed on our E-TUVD dataset. The state-of-the-

rt deep learning based methods used for comparison are: Zhang and
a (2015), Lu et al. (2014), Li et al. (2017), Guerra et al. (2018),

brahim et al. (2019), Zhao et al. (2019), and Al-Haija et al. (2020).
ach of these compared methods are fine-tuned so as to classify the
ix classes of atmospheric/weather conditions of the E-TUVD dataset.
o evaluate and compare the prediction performance of state-of-the-
rt CNN based methods and our proposed network, similar training,
alidation, and testing set from the E-TUVD dataset as mentioned in
able 3 are used. The models after training the state-of-the-art methods
re selected for testing based on the models for which training and val-
dation accuracy is maximum. Table 14 reports the testing performance
f the compared methods and our proposed AWDMC-Net model. The
esting performance has been measured using the average accuracy,
pecificity, and sensitivity with the standard descriptor (i.e., mean ±

standard deviation). Here also, in Table 14 the most outer performed
method is represented by the boldface and underline and the second
most outer performed method is represented by the bold face. It can
be noticed from Table 14 that method proposed by Al-Haija et al.
(2020) has achieved better prediction performance as compared to the
other state-of-the-art methods with an average accuracy, specificity,
and sensitivity of 89.52%, 91.06%, and 87.64% respectively. Also, it
can be perceived that our proposed AWDMC-Net model is observed
to be the best performing method with respect to all the state-of-the-
art methods with an average accuracy, specificity, and sensitivity of
93.85%, 93.79%, and 94.18% respectively.

In real-world outdoor scenes, images acquired from various classes
of atmospheric/weather conditions could be highly imbalanced. To
validate the effectiveness of the proposed AWDMC-Net model with
16
respect to the imbalanced dataset, we have conducted experiments
on some of the imbalanced datasets used by the research commu-
nity for atmospheric/weather classification tasks. Similar to Table 13
of the revised manuscript, the used datasets are: MWI (Zhang and
Ma, 2015), RESIDE (Li et al., 2018), MWD (Lin et al., 2017), and
WeatherDataset-4 (Xia et al., 2020). These datasets are basically imbal-
anced with respect to the atmospheric/weather conditions. To address
the class imbalance problem for atmospheric/weather classification
tasks, we have used the method proposed by Huang et al. (2020)
to balance the unbalanced classes of atmospheric/weather degraded
conditions. From the four variants of their considered method, we have
used the +GAN+ENN variant for data augmentation (i.e., balancing
the classes of the considered atmospheric/weather conditions). This
method adopts Edited Nearest Neighbor (ENN) (Wilson, 1972) with
deep convolutional generative adversarial networks (DCGANs) (Rad-
ford et al., 2015) which basically cleans the unreliable data generated
by DCGANs. To quantify the effectiveness of our proposed AWDMC-Net
model on the balanced dataset generated by Huang et al. (2020), we
have fine-tuned the last layer of our proposed AWDMC-Net depending
upon the atmospheric/weather conditions present in the considered
benchmark datasets thereby retaining the remaining network same. For
training, validation, and testing of the proposed network (i.e., AWDMC-
Net) on these balanced benchmark datasets, the network parameters
are fixed as mentioned for training and testing our proposed AWDMC-
Net on E-TUVD dataset (i.e., mentioned in Section 4.3). The prediction
performance of the proposed AWDMC-Net model on a balanced set
of atmospheric/weather classification benchmark datasets has been
reported in Table 15. The training and validation accuracy for the
best performed epoch for each of the considered atmospheric/weather
degraded benchmark datasets is reported in Table 15. It can be ob-
served that the proposed AWDMC-Net model can well predict the
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Table 16
Performance of our proposed AWDMC-Net model with respect to the Noise.

Noise Performance measures

Accuracy (%) Specificity (%) Sensitivity (%)

Gaussian Noise Rosin and Collomosse (2012) 87.43 ± 2.47 83.47 ± 1.22 89.95 ± 2.06
Salt and Pepper Noise Rosin and Collomosse (2012) 86.18 ± 2.56 87.91 ± 2.07 87.86 ± 2.87
Poisson Noise Rosin and Collomosse (2012) 86.02 ± 1.93 87.91 ± 1.94 85.01 ± 2.11
Speckle Noise Rosin and Collomosse (2012) 88.38 ± 2.12 87.05 ± 2.53 89.98 ± 2.32
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Table 17
Comparison of our proposed AWDMC-Net model with State-of-the-art weather image
classification algorithms on noise imposed frames of E-TUVD dataset.

State-of-the-art methods Accuracy (%)

M. Elhoseiny et al., 2015 Kroemer et al. (2010) 76.05
C. Lu et al., 2016 Lu et al. (2014) 83.37
X. Li et al., 2017 Li et al. (2017) 77.58
J.C.V. Guerra et al., 2018 Liu et al. (2016) 80.52
M.R. Ibrahim et al., 2019 Ibrahim et al. (2019) 72.33
B. Zhao et al., 2019 Zhao et al. (2019) 73.26
Q.A. Al-Haija et al., 2020 Al-Haija et al. (2020) 83.01
AWDMC-Net [Our] 87.00

Bold Face and Underline—Most Outer Performed Method; Bold Face—Second Most
Outer Performed Method.

atmospheric/weather conditions in each of the considered balanced set
of benchmark datasets with an average accuracy of 92.75% on the MWI
dataset (Zhang and Ma, 2015), 90.89% on the RESIDE dataset (Li et al.,
2018), 92.79% on the MWD dataset (Lin et al., 2017), and 91.66% on
the WeatherDataset-4 dataset (Xia et al., 2020).

5.6. Influence of noise in the performance of the proposed AWDMC-Net
model

Presence of noise in the atmospheric/weather degraded images is
obvious when there are some issues in the sensors used to acquire
the atmospheric/weather degraded images online. The effectiveness of
our proposed AWDMC-Net model with respect to the noise externally
imposed in the atmospheric/weather degraded frames is measured.
For effective quantitative measurements of the proposed AWDMC-Net
models, four types of noises i.e., Gaussian Noise (Rosin and Collo-
mosse, 2012), Salt and Pepper Noise (Rosin and Collomosse, 2012),
Poisson Noise (Rosin and Collomosse, 2012), and Speckle Noise (Rosin
and Collomosse, 2012) are included in the atmospheric/weather de-
graded frames. In our proposed study, the experiment is conducted
for a noise variance of 0.01 (i.e., applicable for Gaussian and Speckle
noise). Table 16 reported the prediction performance (i.e., testing
performance) of the proposed AWDMC-Net model on noise imposed
atmospheric/weather degraded frames of E-TUVD dataset. In addi-
tion, comparison of the prediction performance of the proposed model
with the state-of-the-art atmospheric/weather classification methods
has been reported in Table 17. It can be observed from Tables 16
and 17 that the prediction performance of all the state-of-the-art at-
mospheric/weather classification methods and our proposed model
decreases with the noise imposed atmospheric/weather degraded im-
ages of E-TUVD dataset. Also, in Table 17 it can be observed that our
proposed model has achieved better prediction performance with the
aforementioned four types of noises as compared to the state-of-the-
art methods with an average accuracy, specificity, and sensitivity of
87.00%, 86.59%, and 88.20% respectively.

5.7. Running time

Due to the suitability of the atmospheric/weather classification
tasks in real-time applications, including traffic signals and other sup-
portive driving of automobiles, the computational time required for the
classification of atmospheric/weather images is also a very significant
parameter. In this subsection, we will compare the running time of the
proposed AWDMC-Net model with respect to the state-of-the-art CNN
 L

17
Table 18
Running time (in Seconds) comparison for predicting the atmospheric/weather
conditions on a testing set of E-TUVD.

CNN Architecture(s) Time (in Seconds)

VGG-16 Russakovsky et al. (2015) 119.04
VGG-19 Russakovsky et al. (2015) 146.21
AlexNet Krizhevsky et al. (2012) 117.11
Inception-V3 Szegedy et al. (2016) 85.47
GoogleNet Szegedy et al. (2015) 60.57
Resnet-101 He et al. (2016) 77.69
Resnet-50 Huang et al. (2017) 58.31
Resnet-18 Huang et al. (2017) 58.50
Densenet-201 Huang et al. (2017) 57.55
Xception Chollet (2017) 58.02
MobileNet-V2 Sandler et al. (2018) 70.25
Inception-Resnet-V2 Szegedy et al. (2017) 81.13
EfficientNet-B0 Tan and Le (2019) 63.45
Darknet-19 Redmon (2020) 65.56
Darknet-53 Redmon (2020) 61.47
AWDMC-Net [Our] 54.31

models. Table 18 lists the running time (in seconds (sec)) of each of the
CNN models and our proposed CNN model for the prediction of atmo-
spheric/weather conditions on the testing set of the E-TUVD dataset.
Each image sequence from the testing set of E-TUVD had a resolution
of 1920 × 1080 pixels. For comparison, each of these CNN models was
tested on a CPU platform workstation with an Intel®Xeon®Processor
5-1620 v3 @3.50 GHz and 64 GB of installed memory (RAM). From
able 18, it can be observed that an excessively large number of train-
ble parameters of VGG-16 (Russakovsky et al., 2015), VGG-19 (Rus-
akovsky et al., 2015), and AlexNet (Krizhevsky et al., 2012) leads to
very slow running time on the CPU, i.e., 119.04 s, 146.21 s, and

17.11 s, respectively. Conversely, the running time of our proposed
odel is only 54.31 s, which is comparatively less than that of the other
NN models/methods. Therefore, our proposed AWDMC-Net model is
uperior compared to other models both with respect to accuracy, and
omputational speed, and thus can be extensively applied to various
ophisticated equipment in the field of computer vision tasks.

. Conclusion

The presence of atmospheric/weather effects in outdoor scenes
trongly affects the performance of computer vision systems due to the
igh loss in the color contrast and poor visibility. Therefore, the clas-
ification of atmospheric/weather degraded outdoor scenes is essential
o effectively remove and thereby increase the visibility of the scenes.
rom this perspective, we proposed a new CNN network, namely,
WDMC-Net, for classification of different atmospheric/weather de-
raded outdoor scenes. Extensive experiments showed that our pro-
osed network can well maintain the prediction performance and clas-
ifies atmospheric/weather conditions better compared to the other
tandard pre-trained CNN and state-of-the-art methods on our E-TUVD
ataset and also on similar benchmark datasets. Henceforth, our pro-
osed network has the potential to be incorporated into various real-
ime applications comprised of outdoor video monitoring and other
riving systems. In our present study, we have designed the proposed
WDMC-Net model for classification of single atmospheric/weather
onditions (i.e., fog, haze, dust, rain, poor illumination, clear day)
ertaining to the scenes. In future, the proposed network will be
xtended by considering the blended atmospheric/weather degraded
cenes (such as Fog + Rain, Rain + Haze, Fog + Poor Illumination/Low

ight, etc.) for atmospheric/weather classification tasks.
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