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ABSTRACT 

Even though thermal infrared images captured during night time 
are available in some publicly available datasets, such images 
acquisitioned in adverse weather conditions such as low light, dust, 
rain, fog etc. are not reported as yet to the best of our knowledge. 
Because of these deficiencies, object detection techniques applicable 
in weather affected night thermal infrared images have a very limited 
reporting in literature. In the present scope, we discussed the 
acquisition, creation, design, and ground truth annotation of a new 
video dataset consisting of nearly 60 videos representing 4 
atmospheric conditions: low light, dust, rain, fog, named as Tripura 
University Video Dataset at Night time (TU-VDN) in adverse weather 
conditions, suitable for this purpose. The objective is to provide a 
night video dataset containing moving objects with annotated ground 
truth in the image frame sequences. Using TU-VDN a comparative 
study is made between the results of ten existing state-of-the-art 
moving object segmentation methods. 

Index Terms—Moving Object Detection; Night Time; Thermal 
Infrared; Tripura University Video Dataset at Night time (TU-VDN); 
Atmospheric Conditions; Ground Truth. 

1.  INTRODUCTION 
Most automatic night vision systems for monitoring 

intelligently of moving objects presume that the input images 
have clear visibility under lane light but unfortunately this does 
not ensue all the time [1]. The moving object monitoring 
performance depends closely on the enhanced quality of the 
images [2]. The quality of outdoor images is affected by 
several atmospheric conditions that alter the key characteristics 
(e.g., intensity, colour, polarization, and coherence) of the light 
source due to scattering by medium aerosols [3, 4]. Due to poor 
atmospheric conditions, the contrast of the images is degraded, 
which affects the visibility in such a scenario. The contrast 
degradation depends on the coefficient of light scattering 
through aerosols that are suspended in the atmosphere. 
However, as the atmospheric aerosol size decreases, both the 
type and amount of scattering change. Smaller aerosols cause 
more scattering, especially backscattering, and the loss of 
contrast is more severe [3]. In the last few decades, large 
datasets have been designed to meet the increasing demands for 
the development of new models for object detection under poor 
atmospheric conditions [5, 6]. However, there is still a lack of 
video datasets for moving object detection tasks that provide 
balanced coverage in atmosphere-degraded outdoor scenes, 
especially at night. 

Furthermore, for detecting moving objects, both a visual 
digital camera and a typical charge-coupled device (CCD) 
camera have the advantage of high resolution, which renders 
them more suitable for day time or night time use with a proper 
lighting setup. However, they are ineffective in environments 
with poor illumination or visibility due to atmospheric 
conditions because the appearance of objects in the captured 
images is not as clear as in images that are captured during 
under normal atmospheric conditions [7, 1]. Several related 
works have been conducted in such environments [8, 9, 10]. 
To address the limitations of visual and CCD cameras at night 
time, many studies have been conducted on methods that 

detect objects with infrared based cameras [11, 12, 13, 14, 15] 
– including near-infrared (NIR) and far-infrared (FIR) 
cameras. NIR cameras are robust against darkness, and they 
are less costly than FIR cameras. However, NIR cameras have 
a similar drawback to that faced by CCD cameras when the 
interferences are produced by vehicle headlights. In addition, 
the attenuation of visual, CCD, and NIR radiation that is 
produced through atmospheric aerosols is mostly due to their 
short wavelengths. In contrast, FIR cameras enable robust 
object detection regardless of the atmospheric conditions 
because as the spectrum wavelength increases, the effect of 
bad atmospheric conditions decreases [4]. Far less research has 
been carried out on moving object detection at night time 
under various atmospheric conditions using thermal images 
because of the high price of FIR cameras. 

The contributions of this paper are summarized below: 
1. The paper provides the research community with a 
comprehensive thermal video dataset of outdoor night scenes 
degraded by different adverse weather conditions like fog, dust, 
rain, and low light/poor illumination, referred as Tripura 
University Video Dataset at Night time (TU-VDN). 
2. The paper provides annotated ground truth images of the 
prominent objects in each of the extracted frames of the created 
video dataset. 
3. The paper also provides a comparison of ten most widely 
used state of-the-art moving object detection methods based on 
segmentation of foreground/ background and thus, helps to 
select the most effective detection methods in the weather 
degraded outdoor scenes. 

Rest of the paper is organized as follows: Section 2 briefly 
describes the review of related datasets and Section 3 describes 
the design issues and statistics of the created video dataset 
under different atmospheric conditions at night. In Section 4, 
the generation of ground truth images of the salient moving 
objects in each of the extracted frames is described. In Section 
5, popular and widely used state-of-the-art object detection 
techniques are implemented and report the experimental results 
of these methods on our dataset. And finally, Section 6 
concludes the paper. 

2. RELATED DATASETS 
Frame based object detection is interrelated with video 

based object detection, background subtraction, and moving 
object segmentation. In this section, we will review the most 
related datasets including thermal and visual-thermal since 
there is no particular dataset available for purely night based or 
bad atmosphere based such as dust, fog, rain etc. 

OSU-T [5]: OSU thermal pedestrian database is a part of 
OTCBVS benchmark dataset collection for evaluating state-of-
art computer vision algorithms. It contains only about person 
detection in outdoor environment under bad weather of light 
rain, cloudy, and Haze. This database has captured only 284 
numbers of frames from 10 video sequences in day time. The 
persons present in a frame are annotated by bounding box. 

BU-TIV [16]: Thermal Infrared Video (TIV) is the only 
dataset which has addresses several visual analysis tasks such 
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as single or multi-view object tracking, counting, and group 
motion etc. It contains 16 video clips with 63,782 frames in 
total about pedestrian, runner car, bicycle, motorcycle, and bat. 
Bounding box based annotation has done. 

ASL-TID [17]: Thermal Infrared Dataset (TID) is designed 
for object detection, not for tracking with key challenges, for 
e.g., moving camera, cluttered background, and occlusion. It 
contains 4,381 frames divided into 8 sequences about humans, 
cat, and horse those are manually annotated bounding box 
based ground truth. 

LTIR [18]: The Linköping Thermal InfraRed (LTIR) is a 
short term single object tracking dataset of 20 video sequences 
and 11,269 frames. The video clips are recorded cluttered 
background, occlusion, and size-change objects by static, 
hand-held, moving camera in indoor as well as outdoor scenes. 
It captured several objects like rhinoceros, human, horse, car, 
dog, quadrocopter. 

LITIV [19, 20]: This dataset consists of 3 major parts, one 
of these ‘thermal-visible registration’ for people tracking. 
Indoor environment videos are of total 9 sequences of 6,236 
frames, and annotations are based on polygons. 

AIC-TV [21]: The dataset designed for tracking objects 
such as people, bicycles, and vehicles. It fused information 
from standard CCTV and thermal infrared spectrum videos 
with key challenges like scale variation, dark night-time, and 
occlusion. It is a small indoor and outdoor dataset of 6 
sequences with 2,013 frames in total. 

OSU-CT [22]: It is also a part of OTCBVS benchmark 
dataset, fusion based object detection in color and thermal 
imagery. The OSU-CT database is about pedestrian only, and 
consists of 17,089 frames from 6 outdoor video clips. 

CVC-14 [23]: A recent pedestrian detection dataset of 
visible-FIR day-night sequences. It composed by 2 sets of high 
quality outdoor sequences: the day and night sets. The ground 
truth annotations have done through bounding box procedure. 

KAIST [24]: One of the largest pedestrian dataset consists 
of 95,000 color-thermal pair frames. To aligned multispectral 
(i.e. RGB color and thermal) frames, a beam splitter hardware 
used for various regular traffic scenes at day and night time. 
All the pairs are manually annotated includes temporal 
correspondence between bounding boxes. 

CDnet 2012 [25]: It is consists of diverse set videos which 
are covered various change detection challenges in indoor and 
outdoor scenarios: dynamic background, camera jitter, 
intermittent object motion, shadows and thermal. The dataset 
consists of 31 video sequences divided into 6 video categories. 
And all sequences are accompanied by accurate pixel wise 
labeling ground truth segmentation. 

CDnet 2014 [6]: The 2014 version of CDnet is a extension 
of CDnet 2012 with additional following change detection 
challenges: low frame rate, bad weather, night sequences, PTZ, 
and air turbulence. And a total of 53 video sequences with 
nearly 1,60,000 frames. 

Several of these datasets have been designed in the past to 
evaluate moving object detection methods. Among these 
datasets, four have been recorded with thermal sensors to 
detect and tracking objects (i.e. OSU-T, BU-TIV, LTIR, ASL-
TID), where BU-TIV dataset is primarily designed for visual 
analysis tasks. These datasets only contain day-time video 
sequences; where OSU-T dataset includes weather conditions 
with low resolution thermal camera to detect only pedestrian. 

Next numerous datasets (LITIV, AIC-TV, OSU-CT, CVC-
14, KAIST, CDNet 2012, CDNet 2014) contain both colour 
and thermal video sequences, few of them (i.e. LITIV, OSU-
CT, KAIST) works on fusion between two modalities to robust 
detection. The night video sequences contains in AIC-TV, CV-
14, KAIST, and CDNet 2014. These datasets consist of various 
challenges, but very rare datasets consider weather conditions 
except CDNet 2014 although it is day time. As a consequence, 
it is difficult to evaluate robustness of object detection methods 
in atmospheric conditions especially in night vision because 
more than half of object related accidents occur in the night 
time. 

Therefore, we have been designing an atmospheric weather 
degraded conditions based standard video dataset at night time 
that cover many real-world scenarios. The considered 
atmospheric conditions are dust, fog, rain, and a low light 
environment to take the advantages of the thermal camera. 

3. DESIGNING ISSUES AND STATISTICS OF CREATED 
DATASET 

Atmospheric aerosols reduce the visibility of the targets in 
a scene. This effect is especially debilitating at night. It directly 
affects the visibility through the aerosols and through vehicle 
headlamps and, street headlamps. At night, an object is 
typically visible when light from a source is reflected by the 
object back to the terminal camera sensors. To detect the 
presence of objects, terminal sensors use several 
electromagnetic (EM) spectra that range from the visible to the 
near-infrared to the far-infrared regions. For electro-optical 
(EO) sensors, when an EM wave propagates through the 
atmosphere, the primary factors that are responsible for 
extinction are absorption and scattering by atmospheric 
aerosols (for example, -rain, dust, and fog). Both factors 
degrade the performance of all sensors [4]. Because the 
particle size well exceeds the wavelength in the visible portion 
of the EM spectrum (0.4 to 0.74 μm), attenuation by 
atmospheric aerosols is independent of the wavelength. Hence, 
the attenuation is most severe in the visible wavelength range. 
As the wavelength increases, attenuation becomes less of an 
issue. Since wavelengths in the far-infrared region exceed 
those of other infrared wave bands, impact of particles on far-
infrared waves is relatively insignificant. Far-infrared waves 
provide the advantage of ‘seeing’ not only at night but also 
through many atmospheric aerosols such as dust, fog, and rain. 
Fig. 1 shows, visual frames and the corresponding thermal 
sample frames that were captured at night under several 
atmospheric conditions. The ability to see under low light and 
through atmospheric particles is useful for security and 
surveillance applications, which can benefit from the power of 
thermal imaging. 
3.1. Video Recording Conditions and Acquisition Setup 

The video sequences in outdoor environment are mainly 
influenced by several factors, for example - atmosphere, low 
light at night. Such conditions amend the key characteristics of 
EM radio wave due to attenuation by atmospheric aerosols [3]. 
There are several factors (i.e. temperature, dew point, relative 
humidity, wind speed, weather, visibility and so on) considered 
during data acquisition so as to reduce the negative influences 
in analysis. 

Temperature, dew point, and relative humidity: The infrared 
models primarily used temperature and dew point temperature 
to compute relative humidity. As temperature decreases at 
night time, the relative humidity increases even though amount 
of water vapour in the air remains same. In night the 
temperature of the air cools down and often reaches it dew 
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            (a)                          (b)                           (c)                        (d) 

    
           (e)                          (f)                           (g)                       (h) 

Figure 1. Sample Frames of Created Dataset in Night time (a), (b) Visual 
and Corresponding Thermal Frame in Low Light Condition respectively; 

(c), (d) Visual and Corresponding Thermal Frame in Dust Condition 
respectively; (e), (f) Visual and Corresponding Thermal Frame in Rain 

Condition respectively; (g), (h) Visual and Corresponding Thermal Frame 
in Fog Condition respectively. 

    
(a)                            (b)                               (c) 

    Figure 2. A sample frame from created dataset for ground truth 
generation (a) a thermal frame in dust condition (b) identified moving (√) 
and non-moving (×) objects in the frame (c) corresponding ground truth 
binary mask of the frame respectively. **1 frame is annotated per 10 
frames. 

Table 1: Statistics of Created Dataset in different Atmospheric Conditions at Night Time. 

Image Type Camera 
Model 

Camera 
Situation 

Background 
Condition 

Atmospheric Conditions Total 
Videos Low Light Dust Rain Fog 

Thermal FLIR 
T650sc 

Static 
Camera 

Flat Cluttered 
Background 12 7 3 6 28 

Dynamic 
Background 8 8 5 5 26 

Motion Camera 3 1 0 2 6 

Total Number of Videos 23 16 8 13 60 

 

point temperature, so the water vapour in the air changes to 
visible liquid droplets. In other words, fog droplet form when 
the difference between air temperature and dew point is less 
than 2.50C with relative humidity approximately 100% [26]. 
General FIR sensor performance can be predicted to a certain 
degree by knowing the humidity value in the area of interest 
i.e. the greater the humidity, the greater the amount of water 
vapour present, and the greater the infrared (IR) absorption. In 
general, the range which has considered during the data 
acquisition to capture the influence of climate in IR sensor is – 
temperature 20C-300C, humidity 80%-100%, dew point 20C-
150C over whole year for capturing seasonal data. 

Wind speed: Winds may affect the dust area of interest for 
all EO sensors by increasing the density of particles in the air, 
which can impact FIR performance because it also decreases 
thermal contrast that in turn reduces the sensors image quality. 
It is important to accurately forecast wind speed; we managed 
range from 1 mph to 4.5 mph for our acquisition. In this 
consequence, the dust particles which basically comes from 
soil lifted by wind, we captured it from vehicles travelling 
areas on under construction roads. 

Precipitation: Raindrops begin forming when water vapour 
condenses on micro-meter sized particles floating in the 
atmosphere. These particles grow to millimetre sized droplets, 
which are heavy enough to begin falling based upon 
precipitation rate. Here, we consider rate of precipitation in 
between 2.5 mm (0.098 inch) – 7.6 mm (0.30 inch) or 10 mm 
(0.39 inch) per hour to capture the moderate rain falls. 

3.2. Dataset Features 

The TU-NVD dataset provides realistic diverse set of outdoor 
videos in night vision over thermal modality. By maintaining 
above mentioned acquisition conditions, the current dataset 
consists of total 60 video sequences under different 
atmospheric conditions. Each video clip of 2 minutes duration 
is recorded with FLIR camera rigidly mounted 900 alignments 
on a tripod stand by maintaining 200M to 2KM distance from 
objects. Conversely for motion background, the video is 
captured by mounting the camera on a moving vehicle (20∼30 
km/h) where the objects, camera, and background are moving 

simultaneously. Overall statistics has listed in Table 1. The key 
features of the designed dataset are as follows:  
(i) Each frame contains multiple types of moving objects, e.g., 
pedestrians, various types of vehicles, bicyclists, motorbikes, 
trains, and pets. 
(ii) The night video clips were captured under three outdoor 
atmospheric scenarios, namely, dust, rain, and fog, which 
produce flat regions in thermal scenes. In addition, the 
captured scenes are mostly in urban areas, which correspond to 
larger surface variations due to the presence of hot and cool 
objects such as houses, warehouses, office buildings, streets, 
and residents. Therefore, areas with varied background and 
adverse weather conditions produce thermal characteristics that 
lead to an increased flat cluttered region in the target area. 
(iii) A conventional challenge is encountered, namely, a 
dynamic background due to shaking trees, since the whole 
dataset was recorded in an outdoor environment. 
(iv) The key issue with the FIR camera is thermal temperature 
adjustment during the maiden appearance of a moving object 
in a video sequence, which causes illumination-type effects in 
the background model from the current video frame. 
(v) Motion-camera-based videos are captured by mounting the 
camera on a moving vehicle, where the camera and objects are 
moving and shaking simultaneously. 

4. GROUND TRUTH GENERATION OF MOVING SALIENT 
OBJECTS ON THE CREATED DATASET 

      
To test the efficiency of object detection algorithms, the 

ground truth generation of targets in a video sequence is very 
essential. Here we have adopted pixel level binary mask based 
ground truth to evaluate moving object detection methods. 
However, manual annotation of an accurate ground truth data 
often results in uncertainty and strong subjective bias. As well, 
the visual analysis by group members based annotation is 
impractical due to man-power and time constraints. And it is 
also particularly difficult for a person to reliably identify actual 
number moving objects in a multi object frame because all 
objects not always move simultaneously, as shown in Fig. 2. 
Therefore, we decided to produce pixel level ground truth 
images for our dataset with the following semi-automatic 
procedures: (i) To get a good approximation of the targets, one 
to estimate a background model [27, 28, 29] which will be 
compared with current image. This automatic mechanism 
could easy to identify the regions of interest in a frame. (ii) In 
second stage, a user will supervise the identified regions of 
interest by some small changes manually to ensure of required 
quality in labeling work. (iii) As a consequence, only one user 
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Table 2: Comparison using average F1-Score, MCC, and Accuracy performance measures with ten different methods on the TU-NVD dataset. Color’s used 
to indicate place of methods – green for best methods, blue for second best methods, and red for worst methods. 

State-of-Art 
Methods 

Low Light Dust Rain Fog 
F1-Score MCC Acc. F1-Score MCC Acc. F1-Score MCC Acc. F1-Score MCC Acc. 

Vibe 0.5738 0.5954 0.9907 0.5565 0.5823 0.9740 0.7307 0.7379 0.9877 0.5075 0.5484 0.9851 
Subsense 0.4812 0.5091 0.9837 0.5405 0.5679 0.9722 0.6112 0.6171 0.9788 0.7649 0.7663 0.9947 

LOBSTER 0.5244 0.5413 0.9890 0.4967 0.5346 0.9688 0.5658 0.5949 0.9793 0.6225 0.6377 0.9916 
PAWCS 0.3155 0.3505 0.9870 0.2322 0.2872 0.9656 0.6628 0.6752 0.9875 0.2224 0.2376 0.9898 
PBAS 0.5668 0.5803 0.9901 0.4033 0.4311 0.9547 0.7035 0.6893 0.9823 0.6686 0.6788 0.9929 

Multicue 0.4961 0.5314 0.9798 0.6166 0.6345 0.9714 0.5511 0.5912 0.9717 0.4419 0.5160 0.9748 
KDE  0.3845 0.3996 0.9691 0.2689 0.2978 0.9453 0.6198 0.6315 0.9606 0.4228 0.4313 0.9897 

MoG_V2 0.3119 0.3486 0.9854 0.2208 0.2799 0.9673 0.3532 0.3963 0.9651 0.1928 0.2344 0.9895 
Eigenbackground 0.3695 0.4190 0.9673 0.3603 0.3996 0.9184 0.2120 0.1761 0.6499 0.3634 0.4339 0.9745 

Codebook 0.3093 0.3623 0.8848 0.2066 0.2245 0.6807 0.2736 0.3958 0.9021 0.1989 0.2943 0.8809 
 

    

    

    

    
(a) Low Light       (b) Dust              (c) Rain                 (d) Fog 
    Figure 3. Typical segmentation results for various atmospheric 
conditions in our created night time dataset. row (1) shows input frames, 
row (2) shows ground truth, row (3) shows ViBe results (best) , row (4) 
shows CodeBook results (worst). 

 

can reliably classify pixels belongings to either static or 
moving class: Static- assigned binary value of 0, Moving- 
assigned binary value of 1. 
 The whole process has been verified time to time by our 
research team. In this semiautomatic way, one person can 
produce rapidly an uncontroversial binary ground truth images 
for camera captured videos. To validate our annotation results, 
we used TSLAB annotation tool [30] - an advanced and user 
friendly tool for fast labeling of moving objects. Finally, we 
compare the annotated data produced by both procedures (i.e. 
our semiautomatic and TSLAB) with similarity score of 95% 
enough to ensure the effectiveness of our annotation. 

5. COMPARISION OF IMAGE SEQUENCES SEGMENTATED BY 
THE STATE-OF-ART OBJECT DETECTION METHODS 

Moving objection segmentation at night time under thermal 
medium degraded by adverse atmospheric conditions has been 
one of the major research topics. Numerous computer aided 
detection techniques have been proposed in the literature for 
segmentation of video frames. In our work, we have used 
selected most popular ten methods for comparative study over 
our TU-NVD dataset. These state-of-art object detection 
methods are Vibe [28], Subsense [29], LOBSTER [31], 
PAWCS [32], PBAS [27], Multicue [33], KDE [34], MoG_V2 
[35], Eigenbackground [36], Codebook [37] respectively. To 
provide a better assessment of overall performance and 
compare the performances among state-of-art methods, we 
used metrics like Accuracy, Fβ-score and Matthew’s 
Correlation Coefficient (MCC).  

For moving object segmentation evaluation, three videos 
from three challenges (i.e. flat cluttered background, dynamic 
background, motion camera) for each of the weather 
conditions (i.e. low light, dust, rain, and fog) are selected. The 
average value of these performance metrics over three 
challenges for each weather degraded thermal image sequences 
has shown in Table 2. 

From this comparative analysis, we have analysed 
performances over weather conditions. In the low light 
condition, the Vibe method is providing better F1-score, MCC 
and Accuracy, where Codebook and MoG_V2 shows lowest 
results. In the dust condition, the performance using Multicue 
in all category metrics is satisfactory found as finest method, 
and 0.25% decreased accuracy than Vibe which has revealed as 
second best method. As usual, Codebook shows lowest results 
hereto. In the rain condition, Vibe and PBAS provides most 
promising metric values respectively, and Eigenbackground 
method shows awful outcome. In the fog condition, the 
Subsense and PBAS methods are providing best results, where 
MoG_V2 shows lowest results. To provide a better visual 
understanding about the categorization results, we have shown 
a typical segmentation results in Fig. 3 for various atmospheric 
conditions via ViBe background subtraction method. 

6. CONCLUSION AND FUTURE WORK 
 We have described the acquisition and design setup of a 
newly created night video dataset TU-VDN for moving object 
detection on thermal infrared images. The dataset consists of 
(a) degraded atmospheric night outdoor scenes under low light, 
dust, rain, and fog; (b) semi-automatic moving object 
annotations. The far-infrared sensor has shown great video 
sequence acquisitions under bad atmospheric conditions 
because of its higher spectrum wavelength. Furthermore, the 
paper investigates the potentiality of the some well-known 
moving object detection techniques based on background 
segmentation. The evaluation metrics demonstrates that Vibe, 
Subsense, PBAS, and Multicue methods are showing superior 
performances where MoG_V2, Codebook and 
Eigenbackground have still been worst for almost all 
conditions. In future, the dataset will be regularly reworked 
and extended to include other atmospheric conditions. Also we 
will develop new moving object detection algorithm as well as 
deep learning based detection to overcome the limitations of 
the state-of-the-art methods. 
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